Math, asked by gauravbigbrain, 2 months ago

In a certain positive fraction, the sum of the numerator and the denominator is 8. If 2 is added to 4 both the numerator and the denominator, the fraction increases by 4/35. Find the fraction.​

Answers

Answered by ItzAshi
395

Step-by-step explanation:

Let's be the denominator be x

Then the numerator is 8 - x

{\bold{\sf{⟼  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  The \:  required  \: fraction \:  = \:  \frac{8 \: - \: x}{x}}}} \\  \\

When 2 is added to both the numerator and denominator, the fraction becomes

{\bold{\sf{⟼ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{10 \: - \: x}{2 \:  + \: x}}}} \\  \\

From the question,

{\bold{\sf{⟼ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{10 \:  - \:  x}{2  \: +  \: x} \:  \:  -  \:  \: \frac{8 \:  -  \: x}{x}  \:  \: =  \:  \: \frac{4}{35}}}} \\  \\

Let's do further calculations,

{\bold{\sf{⟼  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \frac{x(10  \: - \:  x) \:  -  \: (8 \:  - \:  x)(2  \: + \:  x)}{x(2  \: +  \: x)}  \:  \: =  \:  \: \frac{4}{35}}}} \\  \\

{\bold{\sf{⟼  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \frac{10x  \: -  \: x²  \: -  \: 16 \:  - \:  6x  \: + \:  x²}{x(2  \: +  \: x)}  \:  \: = \:  \:  \frac{4}{35}}}} \\  \\

{\bold{\sf{⟼ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{4x \:  - \:  16}{x(2 \:  +  \: x)}  \:  \: = \:  \:  \frac{4}{35}}}} \\  \\

{\bold{\sf{⟼  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 35(4x  \: - \:  16)  \:  \: = \:  \:  4x(2  \: + \:  x)}}} \\  \\

{\bold{\sf{⟼ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  35(x  \: -  \: 4)  \:  \: = \:  \:  x(2  \: +  \: x)}}} \\  \\

{\bold{\sf{⟼ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  35x  \: -  \: 140 \:  =  \: 2x  \: +  \: x²}}} \\  \\

{\bold{\sf{⟼ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  x³  \: -  \: 33x \:  + \:  140  \:  \: =  \:  \: 0}}} \\  \\

Factorisation,

{\bold{\sf{⟼  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x³  \: - \:  28x \:  -  \: 5x  \: + \:  140   \: \: =  \:  \: 0}}} \\  \\

{\bold{\sf{⟼  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: x(x \:  - \:  28) \:  - \:  5(x  \: - \:  28) \:  \:  =  \:  \: 0}}} \\  \\

{\bold{\sf{⟼  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (x  \: -  \: 28) (x  \: -  \: 5)  \:  \: =  \:  \: 0}}} \\  \\

{\bold{\sf{⟼ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  (x  \: -  \: 28)  \:  \: =  \:  \: 0  \:  \: or \:  \:  (x  \: -  \: 5)  \:  \: =  \:  \: 0}}} \\  \\

{\bold{\rm{⟼ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  x  \: = \:  28  \:  \: OR \:  \:  x  \: = \:  5}}} \\  \\

But x is not equal to 28 because 8 - 28/ 28 is not a positive fraction

x = 5 and then 8 - x = 8 - 5 = 3

{\large{\boxed{\mathfrak{\pink{So  \: the  \: fraction \:  is \:  \frac{3}{5}}}}}} \\

Answered by Anonymous
37

Let the numerator be x and denominator be y.

The fraction is x/y.

Given that their sum = 8.

x + y = 8 ------ (1)

y = 8 - x --------- (2)

Given that if 2 is added to both numerator and denominator, the fraction is increased by 4/35.

\frac{x+2}{y+2} = \frac{x}{y} + \frac{4}{35}

\frac{x+2}{8 - x+2} = \frac{x}{8 - x} + \frac{4}{35}

 \small{35(x + 2)(8-x) = 35x(10-x)+4(8-x)(10-x)}

 \small{-35x^2 +210x + 560 = -31x^2 +278x + 320}

 \small{-35x^2 -68x +240=-31x^2}

-4x^2 -68x + 240 = 0

x^2 + 17x -60=0

x^2 - 3x +20x - 60 = 0

x(x - 3) + 20(x - 3) = 0

x = 3 (or) x = -20.

Since x cannot be -ve, so x = 3.

Then y = 8 - x

= 8 - 3

= 5.

\bold{Therefore\: the\: fraction = \frac{3}{5}}

Similar questions