Math, asked by preethin, 1 year ago

in a circle of diameter 40cm the length of a chord is 20 cm find the length of minor arc of the chord​

Answers

Answered by Anonymous
104

\huge\sf{Given:-}

  • \textsf{Diameter = 40cm}
  • \textsf{Length of a chord = 20cm}

\huge\sf{To\:Find:-}

  • \textsf{Length of minor arc of the chord}

\huge\sf{Solution:-}

  • \textsf{Diameter of the circle = 40cm (given)}
  • \sf{Radius \ of  \ the  \ circle  \ = \  \frac{40}{2}  \ cm \  =    \ 20cm}
  • \textsf{Let AB be a chord of the circle}

\star\:\sf{In  \ \triangle OAB,}

\to\:\sf{OA \  =  \ OB  \ = \  radius  \ of  \ circle \  (20cm)}

\to\:\textsf{AB = 20cm}

\sf{\triangle  \ OAB \  is  \ a  \ equilateral \  triangle}

\to\:\sf{\theta \  =  \ 60^{\circ} \  = \  \dfrac{\pi}{3}  \ radian}

\star\:\sf{We  \ know \  that \  \theta \  =  \ \dfrac{arc}{radius}}

\mapsto\:\sf{Arc  \ =  \ \theta \  \times  \ Radius}

\mapsto\:\sf{\dfrac{\pi}{3}  \ \times \  20cm}

\mapsto\:\sf{\dfrac{20\pi}{3} \  cm}

\therefore\:\sf{The \  length \  of  \ minor \  arc  \ is \  \dfrac{20\pi}{3}  \ cm}

Attachments:
Answered by Anonymous
29

 \red{\large{\underline{\underline{ \rm{Given: }}}}}

 \tt{ Diameter \: of \: a\: circle  = 40 \: cm}

 \tt{ Length \: of \: a \: chord = 20 \: cm}

 \red{\large{\underline{\underline{ \rm{To \: Find: }}}}}

 \tt{The \: length \: of \: minor \:  arc \: of \: the \: chord.}

 \red{\large{\underline{\underline{ \rm{Solution: }}}}}

 \tt{ Diameter \: of \: a \: circle = 40 \: cm}

  \tt{\therefore{Radius \: of \: a \: circle \: =  \dfrac{Diameter}{2}  }}

 \tt{{ \therefore CA = CB =  \dfrac{40}{2}  = 20 \: cm}}

 \tt{Also, \: cord \: AB = 20 \: cm}

Now we know that:

 \tt{CA = CB = AB = 20 \: cm}

Now, All the three sides of ABC are equal,

So ABC is an equilateral triangle.

We know :-

  \tt{\theta =  \dfrac{arc}{radius}}

 \tt{ \theta = 60 \degree }

Convert the degree in radian, we have :

 \tt{60 \times   \dfrac{ \pi}{180}rad}

On cutting,

 \tt{ \dfrac{ \pi}{3} rad}

 \tt{ As, \:  \theta =  \dfrac{arc}{radius}}

 \tt{ \therefore arc =  \theta \times radius}

 \tt{Arc =  \dfrac{ \pi}{3}  \times 20 \: cm}

 \tt{Arc \: i.e., \: AB =  \dfrac{20 \pi}{3} \: cm}

 \tt{\small{ \therefore The \: length \: of \: minor \: arc \: of \: the \: cord  }}  \tt = { \green { \underline{ \boxed{ \gray { \tt{   \frac{ 20 \pi}{3}  \: cm}}}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:
Similar questions