Math, asked by joyoshish2226, 1 year ago

In a circle of diameter 60cm, the length of the chord is 30cm. find the length of minor arc of the chord.

Answers

Answered by bobo46
14
radius=diameter/2=30=chord

Two radius and chords form an equilateral triangle

the length of minor arc of the chord:
60*3.14/6=31.4cm
Answered by rohitkumargupta
1

Answer:

= 31.4 cm

Step-by-step explanation:

Given that ,

                   A circle of dimeter = 60 cm

                   Length of the chord = 30 cm

                   To find the length of minor arc?

So,

    Length of radius of circle = D/2

                                               = 60/2

                                               = 30 cm

  And the length of chord = 30 cm

 

 here , if we join radius and chord then it form a

  equialateral triangle and the angle subtended

   to minor arc of chord Ф= π/3

So, by using the formula.

 Ф = l/r   { where, Ф = angle, l = arc length , r = radius }

  l = Фr

 l = π/3 × 30

 l =  10π

 l = 10 × 3.14

 l = 31.4 cm

Therefore, the length of minor arc of the chord = 31.4 cm

#SPJ3

Similar questions