Math, asked by bhargavi200595, 3 months ago

in a circle of radius 12cm, a chord subtens an angle 120° at the centre.find the area of the corresponding minor segment of the circle​

Answers

Answered by amansharma264
105

EXPLANATION.

Circle of the radius = 12cm.

Chord subtends at an angle of = 120° at the center.

As we know that,

Area of minor segment = Area of sector - Area of triangle

Area of segment AMP = Area of sector OAMB - Area of ΔOAB.

Area of sector OAMB = θ/360 x πr².

⇒ 120/360 x (3.14) x (12)².

⇒ 1/3 x (3.14) x 12 x 12.

⇒ 3.14 x 4 x 12 == 150.72cm².

Area of ΔOAB.

Draw OP ⊥ AB.

⇒ ΔOPA = ΔOPB.

⇒ OA = OB [Same radius].

⇒ OP = OP. [Common].

⇒ ∠OPA = ∠OPB. [Each at 90°].

⇒ ∠AOP = ∠BOP = ∠BOA/2.

⇒ ∠AOP = 60°.

⇒ ∠BOP = 60°.

In right angled triangle ΔOPA.

sinθ = Perpendicular/Hypotenuse.

⇒ sin60° = AP/AO.

⇒ √3/2 = AP/12.

⇒ AP = 6√3cm.

cosθ = Base/Hypotenuse.

⇒ cos60° = OP/AO.

⇒ 1/2 = OP/12.

⇒ OP = 6cm.

⇒ AB = AP + PB.

⇒ AB = 2 x AP.

⇒ AB = 2 x 6√3.

⇒ AB = 12√3.

Area of triangle = 1/2 x Base x Height.

Area of ΔOAB = 1/2 x 12√3 x 6.

Area of ΔOAB = 36√3cm.

Area of ΔOAB = 62.28cm².

Area of segment AMP = Area of sector OAMB - Area of ΔOAB.

Area of segment AMP = 150.72 - 62.28.

Area of segment AMP = 88.44cm².

Attachments:
Answered by Itzheartcracer
74

Given :-

In a circle of radius 12cm, a chord subtens an angle 120°

To Find :-

Area

Solution :-

We know that

Area = θ/360 × πr²

Area = 120/360 × 3.14 × (12)²

Area = 1/3 × 3.14 × 144

Area = 48 × 3.14

Area = 150.72 cm²

Now

Let say that there is a point M that is AB ⊥ OM

Now

AM = BM

AM = 1/2 AB

sin 60 = AM/12

√3/2 = AM/12

√3/2 × 12 = AM

√3 × 6 = AM

6√3 = AM

Now

cos 60 = OM/12

1/2 = OM/12

1/2 × 12 = OM

6 = OM

Now

AB × 1/2 × AM

AB = 2 × AM

AB = 2AM

AB = 2 × 6√3

AB = 12√3

Area = 1/2 × 12√3 × 6

Area = 1 × 12√3 × 3

Area = 36√2

Now

Area of minor segment = 150.72 - 36√3 = 88.4 cm²

[tex][/tex]

Similar questions