Math, asked by vanshikakaria, 3 months ago

In a circle of radius 17 cm, two parallel chords of length 16 cm and 30 cm respectively are
drawn on the same side of the centre. Find the distance between them....​

Answers

Answered by bsm891983
17

Answer:

Step-by-step explanation:

here , XY is the perpendicular distance

now perpendicular from center will bisect the chord

AX=15

AO = 17...(radius)

apply pythagoras to find  

OX=8cm

similarly in triangle OCY

OY=15 cm

total XY = 23 cm

Answered by Blossomfairy
28

Given :

  • Radius of circle = 17 cm
  • Length of one chord = 16 cm
  • Other chord = 30 cm

To find :

  • Distance between the chords

According to the question,

 \sf  :   \implies{(OD) {}^{2}  = (OF) {}^{2}  + (FD) {}^{2} }

 \\

 \sf  : \implies{(17) {}^{2}  = (OF) {}^{2}  + (15) {}^{2} }

 \\

 \sf :  \implies {289 = (OF) {}^{2} + 225}

 \\

 \sf  :   \implies{289 - 225 =( OF) {}^{2} }

 \\

 \sf : \implies{64 = (OF) {}^{2} }

 \\

 \sf :  \implies{ \sqrt{64}  = OF}

 \\

{ \underline{ \boxed{  : \implies{ \sf \red{8 \: cm = OF}}}}} \:  \bigstar

Now,

 \sf :  \implies{(OB) {}^{2}  = (EB) {}^{2}  + (OE) {}^{2} }

 \\

 \sf :  \implies{(17) {}^{2} = ( {8)}^{2}   +(OE) {}^{2} }

 \\

 \sf :  \implies{289 = 64 + ( {OE)}^{2} }

 \\

 \sf :  \implies{225 =  {(OE)}^{2} }

 \\

 \sf :  \implies{225 = ( {OE)}^{2} }

 \\

 \sf :  \implies{ \sqrt{225}  = OE}

 \\

{ \underline{ \boxed{  \sf  \red{ : \implies{15 \: cm = OE}}}}}   \:  \bigstar

So,

➞ Distance between the chords = 15 cm + 8 cm = 23 cm

\\

 \therefore { \underline{ \sf{ \:  \:  \: So, the  \: distance \:  between \:  the  \: chords  \: is \: { \textsf{ \textbf{23 cm.}}} }}}

Attachments:
Similar questions