In a circle of radius 21 CM, an arc subtends an angle of 60 degree at the center. find : (i) The length of the arc, (ii) Area of the sector formed by the arc, (iii) Area of the segment formed by the corresponding chord....please help me out
Answers
Answered by
1
Radius = 21 CM.
THETA = 60
(1) LENGTH OF ARC = 2πRTHETA/360 = 2×22/7×21×60/360 = 23 CM.
(2) AREA OF SECTOR = πR²THETA / 360 = 22/7×21×21×60/360 = 231 CM²
(3) AREA OF SEGMENT = πR²THETA/360 - 1/2R² SIN THETA = 22/7×21×21×60/360- 1/2×21×21×✓3/2.
SOLVE THIS U WILL GET THE AREA OF SEGMENT....
THETA = 60
(1) LENGTH OF ARC = 2πRTHETA/360 = 2×22/7×21×60/360 = 23 CM.
(2) AREA OF SECTOR = πR²THETA / 360 = 22/7×21×21×60/360 = 231 CM²
(3) AREA OF SEGMENT = πR²THETA/360 - 1/2R² SIN THETA = 22/7×21×21×60/360- 1/2×21×21×✓3/2.
SOLVE THIS U WILL GET THE AREA OF SEGMENT....
Answered by
0
Hey
Here is Ur answer
__________________________________________________________
Anwer is in picture _________________________________________________________
hope this will help you
please mark as brilliant
Here is Ur answer
__________________________________________________________
Anwer is in picture _________________________________________________________
hope this will help you
please mark as brilliant
Attachments:
Similar questions