Math, asked by vandana5287, 4 months ago

In a circle of radius 21 cm, an arc subtends an angle of 60° at the centre. Find:
(i) the length of the arc
(ii) area of the sector formed by the arc
(iii) area of the segment formed by the corresponding chord

Answers

Answered by Pranshav18
2

Answer:

Step-by-step explanation:

In the mentioned figure,

O is the centre of circle,

AB is a chord

AXB is a major arc,

OA=OB= radius =21 cm

Arc AXB subtends an angle 60  

o

 at O.

i) Length of an arc AXB =  

360

60

​  

×2π×r

                                         =  

6

1

​  

×2×  

7

22

​  

×21

                                         =22cm

ii) Area of sector AOB =  

360

60

​  

×π×r  

2

 

                                        =  

6

1

​  

×  

7

22

​  

×(21)  

2

 

                                        =231cm  

2

 

iii) Area of segment (Area of Shaded region) = Area of sector AOB− Area of △AOB

By trigonometry,

AC=21sin30

OC=21cos30

And, AB=2AC

∴ AB=42sin30=41×  

2

1

​  

=21 cm

∴ OC=21cos30=  

2

21  

3

​  

 

​  

 cm

∴ Area of △ AOB =  

2

1

​  

×AB×OC

                             =  

2

1

​  

×21×  

2

21  

3

​  

 

​  

=  

4

441  

3

​  

 

​  

 cm  

2

 

∴ Area of segment (Area of Shaded region) =(231−  

4

441  

3

​  

 

​  

)  cm  

2

Answered by prakashpujari1133
2

Answer:

i) length of Arc =x/360×2πr

ii) area of sector =x/360×πr^2

iii) area of segment=area of sector-area of tringle

where x is angle

it may help you


shinjonmaitra: @vandana5287 How big a Shinchan fan are you?
vandana5287: ji hum bhoot bhade fan he shinchen ke apko bhi pasandh he
shinjonmaitra: BOHOT!
shinjonmaitra: To dekhta hu
vandana5287: okkk
shinjonmaitra: Mai kehna chahta tha Roz dekhta hu
shinjonmaitra: Typo Ho gaya
vandana5287: okkk
Similar questions