Math, asked by dhruvcham1242, 3 months ago

In a circle of radius 21 cm, an arc subtends an angle of 60° at the centre. Find:
(i) length of the arc.
(ii) area of the sector formed by the arc.
(iii) area of the segment formed by the corresponding chord.


Instructions:- ❎ No Spamming ❎
✔️ Verified Answers ✔️
Spam answers reported+ Websites answers Reported..

Important Notice:- Answers will be shown to Moderators..

All the Best :)​​​

Answers

Answered by ritika123489
69

Step-by-step explanation:

Radius of the circle, r = 21 cm.

Angle at the centre of the circle, θ = 60° (

1) the length of the arc ?

(2) Area of the sector formed by the arc

(3) Area of the segment.

Attachments:
Answered by Anonymous
25

⠀⠀⠀⠀⠀⠀⠀⠀⠀Diagram is in the attachment

\huge\bf\underline\mathfrak{Answer :}

  • \text{Length of the arc} = \sf\red{22 \: cm}.
  • \text{Area of the sector} = \sf\red{231 \: cm²}.
  • \text{Area of the segment} = \sf\red{231 -  \frac{441}{4} \sqrt{3}\: cm²}

\huge\bf\underline\mathfrak{Step \: by \: step \: explanation :}

\huge\bf\underline\mathfrak{Given :}

  • \text{A circle with centre 'o'}
  • \text{radius = OP = OQ} = \sf\purple{21 \: cm}
  • \text{Angle subtended by the arc, ∠POQ} = \sf\purple{60°}

\huge\bf\underline\mathfrak{To \: find :}

  1. \text{Length of the arc.}
  2. \text{Area of the sector formed by the arc.}
  3. \text{Area of segment formed by the corresponding chord.}

\huge\bf\underline\mathfrak{Solution :}

\sf\underbrace{Finding \: length \: of \: the \: arc, \: PRQ \: :-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀\text{Length of PRQ} = \sf \dfrac{θ}{360°}  \times (2πr)

Where,

  • \text{r = radius = OP = 21 cm}
  • \text{π = 22/7}
  • \text{θ = angle subtended by the arc = 60°}

\underline\text{Putting the above values in the formula :-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀\sf \dfrac{60°}{360°}  \times 2 \:  \times  \frac{22}{7}  \times  \: 21

⠀⠀⠀⠀⠀⠀\implies \sf \dfrac{1}{6}  \times 2 \: \times  \frac{22}{7}  \times  21

⠀⠀⠀⠀⠀⠀\implies \sf\red{22 \: cm}

\sf\underbrace{Finding \: area \: of \: sector \: formed \: by \: PRQ \: :-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀\text{Area of sector OPRQ} = \sf \dfrac{θ}{360°}  \times \pi  r^{2}

\underline\text{Putting the suitable values :-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀\sf \dfrac{60}{360}  \times  \frac{22}{7}  \times 21 \times 21

⠀⠀⠀⠀⠀⠀\implies \sf \dfrac{1}{6}  \times  \frac{22}{7}  \times 21 \times 21

⠀⠀⠀⠀⠀⠀\implies \sf \dfrac{1}{6}  \times 22 \times 3 \times 21

⠀⠀⠀⠀⠀⠀\implies \sf\purple{231 \: cm²}

\sf\underbrace{Finding \: area \: of \: the \: segment \: PRQ \: :-}

\underline\text{In ∆OPQ :}

\text{OP = OQ ( Radii of the same circle )}

⇒ \text{∠OPQ = ∠OQP ( Angles opposite to equal sides)}

\sf\underline{Hence, \: ∆OPQ \: is \: an \: equilateral \: ∆} \text{(2 of it's angles are 60°)}

\underline\text{As we know that,}

⠀⠀⠀⠀⠀⠀⠀⠀⠀\text{Area of equilateral ∆OPQ} = \sf \dfrac{ \sqrt{3} }{4} (s)^{2}

Where, s = side of the OPQ = 21 cm

\underline\text{Putting the suitable value of s :-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀\sf \dfrac{  \sqrt{3}  }{4}  \times 21 \times 21

⠀⠀⠀⠀⠀⠀\implies\sf \dfrac{ \sqrt{3} }{4}  \times 441

⠀⠀⠀⠀⠀⠀\implies \sf \dfrac{441 \sqrt{3} }{4} \: cm²

\underline\text{From the figure, we can say that,}

\color{green}\tt {Area \: of \: segment \: = \: Area \: of \: sector \: - \: Area \: of \: triangle}

\underline\text{Putting the suitable values :-}

⠀⠀⠀⠀⠀⠀⠀⠀⠀\text{Area of the segment} = \sf\red{231 -  \frac{441}{4} \sqrt{3}\: cm²}

Attachments:
Similar questions