History, asked by ooOMizZSaDOoo, 1 month ago

In a circle of radius 21 cm, an arc subtends an angle of 60° at the centre. Find: (i) length of the arc. (ii) area of the sector formed by the arc. (iii) area of the segment formed by the corresponding chord.




iff anyonne knoows pLs answerr







Answers

Answered by Anonymous
2

Answer:

In the mentioned figure,</p><p></p><p>O is the centre of circle,</p><p></p><p>AB is a chord</p><p></p><p>AXB is a major arc,</p><p></p><p>OA=OB= radius =21 cm</p><p></p><p>Arc AXB subtends an angle 60o at O.</p><p></p><p></p><p>i) Length of an arc AXB =36060×2π×r</p><p></p><p></p><p>                                          =61×2×722×21</p><p></p><p></p><p>                                          =22cm</p><p></p><p></p><p> ii) Area of sector AOB =36060×π×r2</p><p></p><p></p><p>                                         =61×722×(21)2</p><p></p><p></p><p>                                         =231cm2</p><p></p><p></p><p>iii) Area of segment (Area of Shaded region) = Area of sector AOB− Area of △AOB</p><p></p><p></p><p>By trigonometry,</p><p></p><p>AC=21sin30</p><p></p><p>OC=21cos30</p><p></p><p>And, AB=2AC</p><p></p><p>∴ AB=42sin30=41×21=21 cm</p><p></p><p></p><p>∴ OC=21cos30=2213 cm</p><p></p><p></p><p>∴ Area of △ AOB =21×AB×OC</p><p></p><p></p><p>                              =21×21×2213=44413 cm2</p><p></p><p></p><p>∴ Area of segment (Area of Shaded region) =(231−44413)  cm2</p><p></p><p>

Answered by tysonbayblad
1

Answer:

dekhi he use train me Jo ladka last me bachta he vi apni family ko bachta kr zombi bn jaasta he

Similar questions