Math, asked by bluee4682, 1 month ago

In a circle of radius 21cm, an arc subtends an angle of 60 at the

centre. Find the area of the sector formed by the arc.​

Answers

Answered by Anonymous
26

 \theta = 60 \degree

 \frac{ \theta}{360 \degree}  \times \pi \:  {r}^{2}

 =  \frac{60}{360}  \times 3.14 \times  {(21)}^{2}  \\  \\  =  \frac{1}{6}  \times 3.14 \times 441 \\  \\  = 0.52 \times 441 \\  = 229.32 {cm}^{2}

Area of sector = 229.32 ≈ 230 cm²

Answered by Itzsidhu193
71

\huge{\bf{\green{\mathfrak{\dag{\underline{\underline{Answer:-}}}}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\sf\red{To\: Find:\:}

\sf\green{The\: area\: of\: the\: sector\: formed\: by\: the\: arc\:}

\sf{Area\: of\: the\: sector\: OAPB\:}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 =  \sf \frac{θ}{360}  \times \pi  \: r {}^{2}

 =   \sf\frac{60}{360 }  \times  \frac{22}{7}  \times 21 \times 21

 =   \sf\frac{1}{6 }  \times  \frac{22}{7}  \times 21 \times 21

 =  \sf \frac{1}{6}  \times 22 \times 3 \times 21

\fbox\pink{231cm²\:}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Attachments:
Similar questions