Math, asked by helenniger502, 10 months ago

In a circle of radius 25cm, length of
the chard 14cm find the distance
of the chord do from the centre​

Answers

Answered by BrainlyConqueror0901
45

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Distance\:between\:chord\:from\:the\:centre=24\:cm}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}} \\  \tt: {\implies Radius \: of \: sphere = 25 \: cm} \\  \\  \tt:  {\implies Length \: of \: chord = 14 \: cm }\\  \\ \red{\underline \bold{To \: Find:}} \\  \tt:{  \implies Distance \: between \:Centre\: and \: chord = ?}

• According to given question :

 \tt \circ \: Let \: OA \:be \: radius = 25 \: cm \\  \\  \tt \circ \: AB = 10 \: cm \\  \\  \tt \circ \: MB = 7 \: cm  \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies   {OA}^{2}  =  {OM}^{2}  +  {MB}^{2}  \\  \\ \tt:  \implies  {25}^{2}  =  {OM}^{2}  +  {7}^{2}  \\  \\ \tt:  \implies 625 =  {OM}^{2}  + 49 \\  \\ \tt:  \implies 625 - 49=  {OM}^{2}  \\  \\ \tt:  \implies 576=  {OM}^{2}  \\  \\ \tt:  \implies OM=  \sqrt{576}  \\  \\  \green{\tt:  \implies OM = 24\: cm} \\  \\   \green{\tt \therefore length  \: of\: OM  \: is \: 24  \: cm}

Answered by Anonymous
57

★ GiveN :

Radius of circle (AO) = 25 cm

Length of the chord (AC) = 14 cm

\rule{200}{1}

★ To FinD :

We have to find the distance of the chord from the centre.

\rule{200}{1}

★ SolutioN :

We know that,

Perpendicular from centre bisects the chord equally

So the Length of chord (AB) = 7 cm

Now, we will apply Pythagorean theorm

\Large{\implies{\boxed{\boxed{\sf{(H)^2 = (P)^2 + (B)^2}}}}}

Where,

  • H is OA (25 cm)
  • P is OB
  • B is AB (7 cm)

Putting Values

\sf{\dashrightarrow (25)^2 = (OB)^2 + (7)^2} \\ \\ \sf{\dashrightarrow (OB)^2 = (25)^2 - (7)^2} \\ \\ \sf{\dashrightarrow (OB)^2 = 625 - 49} \\ \\ \sf{\dashrightarrow (OB)^2 = 576} \\ \\ \sf{\dashrightarrow OB = \sqrt{576}} \\ \\ \sf{\dashrightarrow OB = (\sqrt{24})^2} \\ \\ \sf{\dashrightarrow OB = 24} \\ \\ \Large{\implies{\boxed{\boxed{\sf{OB = 24 \: cm}}}}}

\therefore Distance of the chord from the centre of the circle is 24 cm.

Attachments:
Similar questions