Math, asked by vishalkumar200619, 2 months ago

In a circle with center P and radius 13 cm, the distance of chord AB from center P is 5 cm. Then,
AB=
cm.
a) 5
b) 12
c) 24
d) 8​

Answers

Answered by ButterFliee
51

Given:–

  • Radius of the circle = 13 cm
  • Distance of chord AB from center P is 5 cm.

To Find:–

  • What is the length of chord AB ?

Solution:–

Let AB be a chord inside a circle and AP is radius of the circle.

Construction:–

  • Draw a line PL perpendicular to AB.

Calculation:–

In the circle, APL is a right-angled triangle.

  • \bf{Perpendicular = \rm{5  \: cm}}
  • \bf{Hypotenuse = \rm{13 \: cm}}

Applying Pythagoras theorem,

\rm\orange{\implies (AP)^2 = (AL)^2 + (PL)^2 }

\rm\orange{\implies (13)^2 = (AL)^2 + (5)^2}

\rm\orange{\implies (AL)^2 = (13)^2 - (5)^2}

\rm\orange{\implies AL^2 = 169 - 25}

\rm\orange{\implies AL^2 = 144}

\rm\orange{\implies AL = \sqrt{144}}

\implies\red{\underline{\underline{\bf{ \: \: AL = 12 \: cm \: \: }}}}

Since, PL is perpendicular to line AB so,

  • AL = LB

\rm\orange{\implies AB = AL + LB}

\rm\orange{\implies AB = 12 + 12}

\implies\red{\underline{\underline{\bf{ \: \: AB = 24 \: cm \: \: }}}}

 Hence, The length of the chord AB is 24 cm ❜

━━━━━━━━━━━━━━━━━━━━━━

Attachments:

pandaXop: Awesome (・∀・)
ButterFliee: Thank you (•‿•)
Anonymous: Superb ! (≧▽≦)
ButterFliee: Thank you (•‿•)
Answered by IIUrShonaII
37

━━━━━━━━━━━━━━━━━━━━━

Corrected Question :-

  • In a circle with center P and radius 13cm, the distance of chord AB from center P is 5cm. Then, AB=

Answer :-

Given :-

  • Radius of circle = 13cm
  • Distance of chord AB from center P is 5m

To Find :-

  • Length of AB.

Construction :-

  • Draw a line PL perpendicular to AB.

Solution :-

Let AB be a chord inside a circle and AP is radius of the circle.

  • In the right angled triangle APL, using Pythagoras theorem.

 \sf {(AP)}^{2}  =  {AL}^{2}  +  {PL}^{2}

 \sf {(13)}^{2}  =  {AL}^{2}  +  {(5)}^{2}

 \sf \:  {AL}^{2}  =  {(13)}^{2}  -  {(5)}^{2}

 \sf {AL}^{2}  = 169 - 25

 \sf {AL}^{2}  = 144

 \sf \: AL =  \sqrt{144}

 \sf \:    AL = 12cm

Since PL is perpendicular to SO.

  • AL = LB
  • LB = 12m

AB = AL + LB

AB = 12cm + 12cm

 :  \implies { \underline{ \boxed{ \mathfrak{ \pink{AB = 24cm}}}}}

━━━━━━━━━━━━━━━━━━━━━━

  \rm{ \color{cyan}{❤||ur \: shona||❤}}

Attachments:
Similar questions