Math, asked by Anonymous, 9 months ago

In a class of 60 students,23 play hockey,15 play basketball,20 play cricket and 7 play hockey and basketball,5 play cricket and basketball,4 play hockey and cricket,15 do not play any of the three games. Find

(i) How many play hockey, basketball and cricket

(ii) How many play hockey but not cricket

(iii) How many play hockey and cricket but not basketball​

Answers

Answered by Anonymous
10

\huge\blue{\mid{\underline{\overline{\mathcal{Answer:-}}}\mid}}

Solution:

Given,

Total number of students = 600

Number of students who were drinking Tea = n(T) = 150

Number of students who were drinking Coffee = n(C) = 225

Number of students who were drinking both Tea and Coffee = n(T ∩ C) = 100

n(T U C) = n(T) + n(C) – n(T ∩ C)

= 150 + 225 -100

= 375 – 100

= 275

Hence, the number of students who are drinking neither Tea nor Coffee = 600 – 275 = 325

Similar questions