Math, asked by pranathi1460, 4 months ago

. In a class test, marks obtained by 120 students are given in the following frequency

distribution. If it is given that mean is 59, find the missing frequencies x and y and

mode.​

Answers

Answered by jf207482
7

Answer:

Mark as Brainliest

Step-by-step explanation:

x = 29 and y = 1 are the frequencies

Step-by-step explanation:

Class     Mid-point    Frequency

0 - 10             5              1

10 - 20          15             3

20 - 30         25             7  

30 - 40         35            10

40 - 50         45            15

50 - 60         55             x

60 - 70          65            9

70 - 80          75            27

80 - 90          85           18

90 - 100         95            y

It is given that the class has 120 students and is also equal to the sum of frequencies.

Therefore 1 + 3 + 7 + 10 + 15 + x + 9 + 27 + 18 + y = 120

Therefore x + y =30 .... (i)

Also we know that the mean of the data = 59.

Therefore (5×1) + (15×3) + (25×7) + (35×10) + (45×15) + (55x) +  (65×9) + (75×27) + (85×18) + (95y) = 120×59

⇒      5 + 45 + 175 + 350 + 675 + 55x + 585 + 2025 + 1530 + 95y = 7080

⇒      55x + 95y = 1690

∴        11x + 19y = 338 .... (ii)

Multiplying equation (i) by 11 we get

     11x + 11y = 330 .... (iii)

Subtracting (iii) from (ii) we get 8y = 8.  Therefore y = 1 .... (iv)

Using the value of y from (iv) in (i) we get x + 1 = 30     ∴   x = 29 .... (v)

Similar questions