Math, asked by viji18net, 9 months ago

In a class test, marks scored by students are given in the following frequency distribution marks- 0-6, 6-12, 12-18, 18-24, 24-30 number of students- 1,4,9,3,3 find the mean and median of the data.

Answers

Answered by SarcasticL0ve
7

\sf \bold{\underline{Question:-}}

⠀⠀⠀⠀⠀⠀⠀

In a class test, marks scored by students are given in the following frequency distribution marks -

⠀⠀⠀⠀⠀⠀⠀

\begin{tabular}{|c|c|c|c|c|c|c|c|}\cline{1-6} \tt Marks & \tt 0-6 & \tt 6-12 & \tt 12-18 & \tt 18-24 & \tt 24-30 \\\cline{1-8}\tt No. of Students &\tt 1& \tt 4& \tt 9 & \tt 3 & \tt 3\\\cline{1-6}\end{tabular}

⠀⠀⠀⠀⠀⠀⠀

Find the mean and median of the data.

⠀⠀⠀⠀⠀⠀⠀

\sf \bold{\underline{AnswEr:-}}

⠀⠀⠀⠀⠀⠀⠀

\begin{lgathered}\begin{tabular}{| c | c | c | c | c |}\cline{1-5} \bf{class interval} & \bf{Frequency (fi)} & \bf{(xi)} & \bf{fixi} & \bf{C.f.}\\ \cline{1-5}\sf{0 - 6} & \sf{1} & \sf{3} & \sf{3} & \sf{1}\\ \cline{1-5}\sf{6 - 12} & \sf{4} & \sf{9} & \sf{36} & \sf{5}\\ \cline{1-5}\sf{12 - 18} & \sf{9} & \sf{15} & \sf{135} & \sf{14}\\ \cline{1-5}\sf{18 - 24} & \sf{3} & \sf{21} & \sf{63} & \sf{17}\\ \cline{1-5}\sf{24 - 30} & \sf{3} & \sf{27} & \sf{81} & \sf{20}\\ \cline{1-5}\sf{Total } & \sf{ $\sum\limits\ \sf fi$ = 20} & {} &$\sum\limits\sf\ fixi \sf\ = 318$ & \sf{}\\ \cline{1-5} \end{tabular}\end{lgathered}

⠀⠀⠀⠀⠀⠀⠀

{\underline{\sf{\bigstar\;Now,\;We\;have\;to\; calculate\;median\;:}}}

⠀⠀⠀⠀⠀⠀⠀

Here,

⠀⠀⠀⠀⠀⠀⠀

Sum of frequency, N = 20

⠀⠀⠀⠀⠀⠀⠀

N is an even number.

⠀⠀⠀⠀⠀⠀⠀

we know that,

⠀⠀⠀⠀⠀⠀⠀

Median observation is,

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \dfrac{ \frac{n}{2}^{th} + \frac{n + 1}{2}^{th}}{2}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \dfrac{10^{th} + 11^{th}}{2}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \dfrac{14 + 14}{2}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf \cancel{ \dfrac{28}{2}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\bf 14

⠀⠀⠀⠀⠀⠀⠀

It lies between interval of 12 - 18

⠀⠀⠀⠀⠀⠀⠀

Therefore, Median class = 12 - 18

⠀⠀⠀⠀⠀⠀⠀

\boxed{\begin{minipage}{6cm}$\bigstar$\:\:\sf Median = l + $\sf\dfrac{\frac{N}{2}-C.f.}{f}\times h\\\\Here:\\1)\:l=Lower\:limit\:of\:median\:class=12\\2)\:C.f.=Cumulative\:frequency\:of\:class\\preceeding\:the\:median\:class=5\\3)\:f= frequency\:of\:median\:class=9\\4)\:h= Class\:interval =18 - 12 = 6\end{minipage}}

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\purple{Median = l + \dfrac{ \frac{N}{2} - C.f}{f} \times h}}}}

⠀⠀⠀⠀⠀⠀⠀

{\underline{\sf{\bigstar\;Putting\: values\;:}}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf Median = 12 + \dfrac{ \frac{20}{2} - 5}{9} \times 6

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf Median = 12 + \dfrac{ 10 - 5}{9} \times 6

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf Median = 12 + \dfrac{5}{ \cancel{9}} \times \cancel{6}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf Median = 12 + \dfrac{5}{3} \times 2

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf Median = 12 + \dfrac{10}{3}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf Median = 12 + 3.33

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\sf{\pink{Median = 15.33}}}}}\;\bigstar

━━━━━━━━━━━━━━━

⠀⠀⠀⠀⠀⠀⠀

{\underline{\sf{\bigstar\;Now,\;We\;have\;to\; calculate\;mean\;:}}}

⠀⠀⠀⠀⠀⠀⠀

\star\;{\boxed{\sf{\purple{Mean(\bar x) = \dfrac{ \sum\;fixi}{\sum\:fi}}}}}

⠀⠀⠀⠀⠀⠀⠀

{\underline{\sf{\bigstar\;Putting\: values\;:}}}

⠀⠀⠀⠀⠀⠀⠀

:\implies\sf Mean(\bar x) = \dfrac{318}{20}

⠀⠀⠀⠀⠀⠀⠀

:\implies{\underline{\boxed{\sf{\pink{Mean(\bar x) = 15.9}}}}}\;\bigstar

⠀⠀⠀⠀⠀⠀⠀

\therefore Mean and Median of the given data is 15.9 and 15.33 respectively.

Similar questions