Math, asked by Dhdfr, 11 months ago

In a class test, the sum of shefali's marks in mathematics and English is 30. Has she got 2 marks more in mathematics and 3 Marks less in English, the product of their marks would have been 210. Find her marks in the two subjects.

Answers

Answered by Anonymous
39

 \huge \bf \red{SO} \purple{LU} \green{TI} \pink{ON} \blue{:-}

 \bf \: Let \: Shefali's \: marks \: in \: Mathematics \: be  \: \bf \red{x.}

 \bf \: Then, \: Shefali's \: marks \: in \: English \:

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \rm = \:  ( \bf \red{30 - x})

  \boxed {\bf \: ∵ The \: sum \: of \: Shefali's \: marks \: in \: Mathematics \: and \: English \: is \: 30}

 \bf \: According \: to \: the \: question,

 \:  \:  \:  \:  \:  \:  \:  \:  \bf(x + 2)(30 - x) - 3 = 210

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf(x + 2)(27 - x) = 210

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \ \:  \:  \:  \:  \bf27x - x {}^{2}  + 54 - 2x = 210

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf - x {}^{2}  + 25 + 54 - 210 = 0

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \: \bf - x {}^{2}  + 25x - 156 = 0

 \bf \: Dividing \: by \:  - 1

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bf \: x {}^{2}  - 25x + 156 = 0

 \implies  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \ \ \boxed{ \bf{ax {}^{2}  + bx {}^{2}  + c = 0}}

 \bf \: which \: is \: a \: quadratic \: equation \: in \: x.

 \bf \: Here \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: a = 1 \: b =  - 25 \: c = 156

 \bf \: So \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: d = b {}^{2}  - 4ac

 \bf \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  = ( - 25) {}^{2}  - 4(1)(156)

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \bf =  \: 625 - 624 = 1

 \bf \: Using \: the \: quadratic \: formula,

 \bf \: we \: get

 \bf \: x =  \frac{ - b \: ± \:  \sqrt{D} }{2a} =  \frac{25 \: ± \:  \sqrt{1} }{2(1)} =  \frac{25 \: ± \: 1}{2} \\

 \implies \:  \:  \:  \:  \:  \:  \:  \bf \: x =  \frac{25 + 1}{2} \frac{25 - 1}{2} = 13 \: 12

 \implies \:  \:  \:  \:  \:  \:  \bf \: 30 - x = 30 - 13 \: or \: 30 - 12

 \implies \:  \:  \:  \bf \: 30 - x = 17 \: 18

 \bf \: Therefore, \: either \: Shefali's \: marks \: in \: Mathematics \: are   \\ \bf \red{13} \: and \: in \: English  \: \red{ 17 }\: or \: her \: marks \: in \: Mathematics \: are \\  \bf \red{ 12 }\: and \: in \: English  \: \red{ 18}.

Answered by Anonymous
8

\huge\boxed{\fcolorbox{yellow}{black}{❥ANSWER}}

Let us say, the marks of Shefali in Maths be x.

Then, the marks in English will be 30 – x.

As per the given question,

(x + 2)(30 – x – 3) = 210

(x + 2)(27 – x) = 210

⇒ -x2 + 25x + 54 = 210

⇒ x2 – 25x + 156 = 0

⇒ x2 – 12x – 13x + 156 = 0

⇒ x(x – 12) -13(x – 12) = 0

⇒ (x – 12)(x – 13) = 0

⇒ x = 12, 13

Therefore, if the marks in Maths are 12, then marks in English will be 30 – 12 = 18 and the marks in Maths are 13, then marks in English will be 30 – 13 = 17

Similar questions