Math, asked by ashketchum3868, 1 year ago

In a class the ratio of the number of boys and that of the girls is 11:9. If 30% of the boys and 20% of the girls are passed. Find the percentage of passed students of the class.

Answers

Answered by belikebullet
19

Answer:


Step-by-step explanation:


Attachments:
Answered by KomalSrinivas
4

Given: Ratio of boys and girls in class = 11 : 9

          Percentage of boys who passed = 30%

          Percentage of female students who passed = 20%

To Find: Percentage of passed students of the class.

Solution:

Let x be the common factor.

∴ Number of boys = 11x

  Number of female students = 9x

  Total number of students = 11x + 9x

                                               = 20x  

Number of boys who passed = 30% of 11x

                                                = \frac{30}{100} \times 11x

                                                = \frac{33x}{10}

Number of females students who passed = 20% of 9x

                                               = \frac{20}{100} \times 9x

                                               = \frac{18x}{10}

Total number of students who passed = \frac{33x}{10} +\frac{18x}{10}

                                                                =  \frac{51x}{10}

∴ Percentage of passed students = \frac{Students who passed}{Total number of students} \times 100

                                                     =  \frac{\frac{51x}{10} }{20x} \times 100 % %

                                                     = \frac{51x}{10} \times\frac{1}{20x} \times 100%

                                                     = \frac{51}{2}%

                                                     = 25.5%

Answer: 25.5% of students passed in the class.

Similar questions