Math, asked by balamurugandhanush07, 10 months ago

In a classroom Chinni, Chameli and Nikki are seated at A(3, 1), B(6, 4) and C(8, 6)

respectively. Do you think they are seated in a same line? Give reasons for your

answer. ​

Answers

Answered by ShírIey
72

AnswEr:

If Chinni, Chameli & Nikki are seated at Points A,B & C. So, Points must be collinear.

AB + BC = AC

By Using Distance Formula We can Find AB, BC & AC.

\rule{200}3

\dag\:\large\bold{\underline{\sf{For\:AB}}}

A(3, 1) & B(6,4)

\sf{Here}\begin{cases}\sf{x_1 \:=\: 3} \\ \sf{x_2\:=\: 6} \\ \sf{y_1\:=\; 1}\\ \sf{y_2\:=\: 4}\end{cases}

\longrightarrow\sf\: \sqrt{(x_2\:-\:x_1)^2\:+\:(y_2\:-\:y_1)^2}

\longrightarrow\sf\: \sqrt{(6 - 3)^2 + (4-1)^2}

\longrightarrow\sf\: \sqrt{(3)^2 + (3)^2}

\longrightarrow\sf\: \sqrt{9+9}

\longrightarrow\sf\: 3\sqrt{2}

\rule{200}3

\dag\:\large\bold{\underline{\sf{For\:BC}}}

B(6,4) & C(8,6)

\sf{Here}\begin{cases}\sf{x_1\:=\: 6}\\ \sf{y_1\:=\: 4} \\ \sf{x_2\:=\: 8} \\ \sf{y_2\:=\:6}\end{cases}

\longrightarrow\sf\: \sqrt{(8-6)^2 \:+\; (6-4)^2}

\longrightarrow\sf\: \sqrt{(4 + 4)}

\longrightarrow\sf\: 2\sqrt{2}

\rule{200}3

\dag\:\large\bold{\underline{\sf{For\:AC}}}

A(3, 1) & C(8,6)

\sf{Here}\begin{cases}\sf{x_1\:=\:3}\\ \sf{y_1\:=\:1}\\ \sf{x_2\:=\: 8} \\ \sf{y_2\:=\: 6}\end{cases}

\longrightarrow\sf\: \sqrt{(8-3)^2\:+\:(6-1)^2}

\longrightarrow\sf\: \sqrt{25\:+\:25}

\longrightarrow\sf\: 5\sqrt{2}

Hence, AB = 3√2 , BC = 2√2 & AC = 5√2

\longrightarrow\sf\:  AB + BC = AC

\longrightarrow\sf\: 3\sqrt{2} \:+\: 2\sqrt{2}

\longrightarrow\sf\: 5\sqrt{2}

Here, we can see that points are collinear.

So, that Chinni, Chameli & Nikki are seated in the same line.

Answered by Saby123
11

Question :

In a classroom Chinni, Chameli and Nikki are seated at A(3, 1), B(6, 4) and C(8, 6)

respectively. Do you think they are seated in a same line? Give reasons for your answer.

Solution :

By Distance Formula :

d \:  =  \sqrt{ ({x_{2} - x_{1})}^{2}  + ({y_{2} - y_{1})}^{2}}

AB =  3 \sqrt {2}

BC =  2 \sqrt {2}

AC =  5 \sqrt {2}

Hence, A, B and C are seated in a straight line.

Similar questions