Math, asked by devkrishna75, 10 months ago

in a classroom one third of the total students are boys .If one sixth of the boys are one fourth of the girls are absent in the number of students present is 28. What is the total number of students ?​

Answers

Answered by saranmass2349
2

Answer:

36

Step-by-step explanation:

Let the total number of boys be x, and the total number of girls be y.

One third out of all students are boys,

So,

1/3(x+y) = x

=> x+y = 3x

=> y = 2x

One sixth of the boys are absent. So, number of boys present = x - (1/6)x

                                                                                                      = (6x - 1x)/6

                                                                                                      = 5x/6

One fourth of the girls are absent. So, number of girls present = y - (1/4)y

                                                                                                      = (4y-1y)/4

                                                                                                      = 3y/4

Total number of students present = 28

So,

5x/6 + 3y/4 = 28

(10x + 9y)/12 = 28

10x + 9y = 28*12

10x + 9y = 336

10x + 18x = 336                                       [y = 2x]

28x = 336                                                                  

x = 12

So, number of girls y = 2x

                              y = 2*12                   [ x = 12 ]

                              y = 24

Total number of students = x+y = 12 + 24 = 36 (ans.)

Similar questions