Math, asked by mahima6044, 11 months ago

In a combined test in G.K and English, 36% candidates failed in G.K., 28% failed in English and 12% failed in both.

(i) Find the percentage of candidates passed.

(ii) If 416 candidates have failed, how many candidates appeared in the test?​

Answers

Answered by Anonymous
3

\Huge{\underline{\sf{Solution-}}}

\textsc Candidates failed in G.K only = (36 - 12) % =  \textsc 24 %

\textsc Candidates failed in English only= (28-12)% = \textsc 16 %

 \textsc Candidates failed in both = 12 %

\textsc Candidates failed = Candidates failed in one or both the subjects

=\textsc(24+16+12) %

= \textsc52 %

____________________________________

(i) {\bf{\sf{Candidates \  passed}}}

= (100 - 52)%

= 48%

____________________________________

(ii) {\bf{\sf{If \ 52 \ fail, \ number \ appeared}}}

=  100

{\bf{\sf{Then, \ if \ 416 \ fail, \ number \ appeared}}}

= (100/52 × 416)

=  800.

____________________________________

Similar questions