Math, asked by chandraaman097, 8 months ago

In a commutative ring without unity a maximal ideal
(a) need to be prime
(b) need not to be prime
(c) both (a) and (b)
(d) none of these

Answers

Answered by pulakmath007
9

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO CHOOSE THE CORRECT OPTION

In a commutative ring without unity a maximal ideal

(a) need to be prime

(b) need not to be prime

(c) both (a) and (b)

(d) none of these

ANSWER

In a commutative ring without unity a maximal ideal

(b) need not to be prime

EXPLANATION

\sf{Consider \:  the \:  ideal  \: 4 \mathbb{Z} \:  in \:  the \:  ring  \: 2 \mathbb{Z}}

\sf{Since \:   \: 2  \in 2 \mathbb{Z}  \:  \: but \:  \:  2  \notin  \: 4 \mathbb{Z} \: }

 \sf{So  \: 4 \mathbb{Z} \:  is  \: a  \: proper \:  subset  \: of \:  2 \mathbb{Z}}

 \sf{Let \:  U  \: be  \: an \:  ideal  \: of \:  the \:  ring \:  \:  2 \mathbb{Z}}

 \sf{Which  \: properly  \: contains \:  \:  4 \mathbb{Z}}

\sf{Then  \: there  \: exists \:  an \:  element \:  \:  p  \in  \: U}

 \sf{Such  \: that \:  \:  p  \notin \:  4 \mathbb{Z}}

\sf{Then   \: \: p = 4m+2   \: \: where \:  m \:  is \:  an  \: integer}

\sf{4m  \in 4 \mathbb{Z}  \:  \: therefore  \: \:  4m  \in U}

\sf{Since \:  U \:  is  \: an  \: Ideal \: ,  \: p  \in U \:  and \:  4m  \in U}

\implies \sf{ (p-4m) \in U}

\sf{So \:  \:  2  \in U}

\sf{And  \: this \:  again \:  implies \:  that  \: U = 2 \mathbb{Z}}

 \sf{Thus \:  4 \mathbb{Z}  \subset  \: U \:  \subset \:  2 \mathbb{Z}}

\sf{ \implies \:  \:  U= 2 \mathbb{Z }}

\sf{This \:  proves  \: that  \: 4 \mathbb{Z} \:  is \:  a \:  maximal \:  Ideal  \: in  \: 2 \mathbb{Z}}

\sf{Since  \: 2.2  \in  \: 4 \mathbb{Z}   \: \: but \:  2  \notin 4 \mathbb{Z}}

\sf{The \:  ideal  \: 4 \mathbb{Z }\:  in \:  the \:  ring \:  2 \mathbb{Z } \: is  \: not  \: prime}

\sf{Therefore  \: 4 \mathbb{Z} \:  \:  is \:  a \:  maximal  \: Ideal}

\sf{but \:  not  \: prime \:  ideal  \: in \:  the \:  ring  \:  \: 2 \mathbb{Z}}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Show that the set Q+ of all positive rational numbers forms an abelian group under the operation * defined by a*b= 1/2(ab)

https://brainly.in/question/21467351

Similar questions