In a Cyclic Quadirilaterl ABCD, if LA = (3x+7y+13), LB = (11x+3y) LC= (9x-y+17) and LD = (4x+5y -12) then the measure of LA *
Answers
Answered by
2
LA = (3x+7y+13), LB = (11x+3y) LC= (9x-y+17) and LD = (4x+5y -12)
Since ABCD is a quadrilateral ∠A + ∠B + ∠C + ∠D = 360
3x+7y+13 + 11x+3y + 9x-y+17 + 4x+5y -12
27x + 14y + 28 = 360
Since ABCD is cyclic ∠A + ∠C = ∠B + ∠D = 180 °
11x+3y + 4x+5y -12 = 180
15x + 8y = 192
3x+7y+13 + 9x-y+17 = 180
12x + 6y = 150
Cross multiplication => (15*6)x + (8*6)y - (12*8)x - (6*8)y = (192*6) - (150*8)
90x - 96x + 48y - 48 y = 1152 - 1200
-48 = -6x
x = 8
Substituting => 12*8 + 6y = 150
96 + 6y = 150
6y = 54
y = 9
∠A = 3*8 + 7*9 + 13
= 24 + 63+ 13
∠A = 100 °
:-)
Similar questions