In a cyclic quadrilateral ABCD angle A=(2x+y),angleB=(y+3) angleC=(2y+10) angle D=(4x-5) find four angles
Answers
Answered by
3
As per the rule,
=>Sum of Opposite angle of a cyclic quadrilateral is equal to 180
So, following this rule
angle A+angle C=180
2x+y+2y+10=180
2x+3y=180-10
2x+3y=170................i×2
angle B+angle D=180
y+3+4x-5=180
4x+y-2=180
4x+y=180+2
4x+y=182...............ii
sub ii from i×2
4x+6y-(4x+y)=340-182
4x+6y-4x-y=158
5y=158
y=158/5
putting value of y in equation ii
4x+y=182
4x+158/5=182
(20x+158)/5=182
20x+158=910
20x=910-158
20x=752
x=752/20
x=376/10
=>Sum of Opposite angle of a cyclic quadrilateral is equal to 180
So, following this rule
angle A+angle C=180
2x+y+2y+10=180
2x+3y=180-10
2x+3y=170................i×2
angle B+angle D=180
y+3+4x-5=180
4x+y-2=180
4x+y=180+2
4x+y=182...............ii
sub ii from i×2
4x+6y-(4x+y)=340-182
4x+6y-4x-y=158
5y=158
y=158/5
putting value of y in equation ii
4x+y=182
4x+158/5=182
(20x+158)/5=182
20x+158=910
20x=910-158
20x=752
x=752/20
x=376/10
Similar questions