in a cyclic quadrilateral PQRS angle P=(2x+4)° , angle Q=(y+3)°, angle R=(2y+10)° and angle S=(4x-5)°,then find smallest angle
Answers
Answered by
11
As PQRS is cyclic quadrilateral
p + r = 180
q + s = 180
Now
P + R = 180
2x+4 + 2y + 10 = 180
2(x+y) = 166
x + y = 83.......(1)
Now
Q + S = 180
y + 3 + 4x-5 = 180
4x + y = 182.....(2)
Subtracting (1) from (2)
4x+y-(x+y) = 182 - 83
3x = 99
x = 33
y = 83 - x
= 83 - 33 = 50
Now
P = 2(33)+4 = 70
Q = 50 + 3 = 53
R = 2(50)+10
= 110
S = 4(33)-5 = 127
Hence Q is the smallest angle
Hope you gotta
Sahil Thakur
Answered by
3
Answer:
∠P=70
∠Q=53
∠R=110
∠S=127
Step-by-step explanation:
In a cyclic quadrilateral sum of opposite angles is 180
∴ ∠R+∠P=180
∠Q+∠S=180
SINCE ∠R+∠P=180,
2X+4+2Y+10 = 180
2(X+Y) = 166
X+Y = 83------------- 1
similarly
∠Q+∠S=180
SO,
Y+2+4X-5=180
4X+Y=182------------2
SUBTRACT 1 FROM 2
WE GET X= 33
SUBSTITUTE X=33 IN 2
33+Y=83
∴Y= 50
NOW SUBSTITUTE THE VALUES
∠P= 2×33+4 = 70
∠Q=50+3=53
∠R=2×50+10= 100 +10=110
∠S= 4×33-5 = 127
HOPE IT WILL HELP YOU
THANKYOU
Similar questions