Math, asked by rekharose, 1 year ago

in a cylinder its radius is halved and height is doubled then find the ratio of volume of original to new one.

Answers

Answered by Aaeesha
2


Original Volume of cylinder= 22/7 x r^2 x h

when radius= r/2 and height= 2h

then new volume= 22/7 x (r/2)^2 x (2h)

Original volume/ new volume= 2

therefore when radius is halved and height is doubled then the new volume becomes 1/2 times of the original volume.

Answered by krishkumar
1
Volume of a cylinder =  \pi r²h
original volume         =  \pi r²h
new radius               =r/2
new height               =2h
mew volume            =  \pi (r/2)² × 2h
                              =  \pi r²/4 × 2h
                              =  \pi  r²/2 × h
Volume of original cylinder : volume of new cylider = \pi r²h:  \pi r²/2 × h
                                                                          =r² : r²/2 ( \pi and h                                                                                                       cancelled)
                                                                  Multiplying by 2
                                                                          = 2r² : r² (r² cancelled)
                                                                          = 2


bleszzzz: Nice answer
rekharose: thank you......
Similar questions