Math, asked by minakshiparida, 1 year ago

in a cylindrical pipe the area of the surface are 5 154 square metre and 880 square metre find the radius and the height of the cylinder​

Answers

Answered by Anonymous
218

ANSWER :

\bf{\Large{\underline{\underline{\sf{Given\::}}}}}

  • A cylinder pipe the surface area = 154 m².
  • Curved surface area of cylinder = 880 m².

\bf{\Large{\underline{\underline{\sf{To\:find\::}}}}}

The radius and the height of the cylinder.

\bf{\Large{\underline{\underline{\tt{\green{Explanation\::}}}}}}

\boxed{\begin{minipage}{6cm}\sf{\large{\underline{\tt{\red{Formula\::}}}}}\\ \\ \sf Area\:of\:circle\:=\:\pi r^{2} \\ \\ \sf Area\: of\:curved\:surface\:area\:=\:2\pi rh \end{minipage}}

A/q

|\implies\:\sf{Cylinder\:Pipe\:=\:\pi r^{2} }\\\\\\\\|\implies\sf{154m^{2} \:=\:\frac{22}{7} *r^{2} }\\\\\\\\|\implies\sf{r^{2} \:=\:\dfrac{\cancel{154} *7}{\cancel{22}} }\\\\\\\\|\implies\sf{r^{2} \:=\:(7*7)m^{2} }\\\\\\\\|\implies\sf{r^{2} \:=\:49m^{2} }\\\\\\\\|\implies\sf{r\:=\:\sqrt{49m^{2} } }\\\\\\\\|\implies\sf{\red{r\:=\:7m}}

_______________________________________

\longmapsto\sf{C.S.A.\:=\:2\pi r h}\\\\\\\\\longmapsto\sf{880m^{2} \:=\:2*\frac{22}{\cancel{7}} *\cancel{7}*h}\\\\\\\\\longmapsto\sf{880m^{2}\:=\:44*h}\\\\\\\\\longmapsto\sf{h\:=\:\cancel{\dfrac{880m^{2} }{44m}} }\\\\\\\\\longmapsto\sf{\red{h\:=\:20m}}

Thus,

  • Height = 20m
  • Radius = 7m.

kaushik05: awesome
Answered by EliteSoul
402

Answer:

\bold\green{Radius\: \&\: Height} = {\boxed{\bold{7\: m \: \& \: 20 \: m}}}

Step-by-step explanation:

Given:-

  • Surface area of cylindrical pipe = 154 sq.m
  • Curved surface area = 880 sq.m

To find:-

  • Radius = ?
  • Height = ?

1st case:-

{\boxed{\bold\green{Surface\: area = \pi{r}^{2} }}}

\Rightarrow\sf 154 = \pi{r}^{2} \\\\\Rightarrow\sf 154 = \dfrac{22}{7}\times {r}^{2} \\\\\Rightarrow\sf {r}^{2} =\cancel{154} \times \dfrac{7}{\cancel{22}} \\\\\Rightarrow\sf {r}^{2} = 49 \\\\\Rightarrow\sf r =\sqrt{49}\: m \\\\\Rightarrow{\boxed{\bold\green{r = 7 \: m }}}

\therefore\bold{Radius (r) = 7 \:  m }

\rule{300}{1}

2nd case:-

{\boxed{\bold\purple{CSA = 2\pi r h }}}

\Rightarrow\sf 880 = 2 \pi \times 7 \times h \\\\\Rightarrow\sf 880 = 2 \times \dfrac{22}{\cancel{7}}\times \cancel{7} \times h \\\\\Rightarrow\sf 880 = 44 \times h \\\\\Rightarrow\sf h =\cancel{\dfrac{880}{44}} \\\\\Rightarrow{\boxed{\bold\purple{h = 20 \: m }}}

\therefore\bold{Height = 20 \: m }


kaushik05: perfect
Similar questions