Math, asked by manasbsnl304, 8 months ago

In a cylindrical water tank the hieght is 24cm & base diameter is 7cm find the Volume of the water tank can store water in leters​

Answers

Answered by Anonymous
14

Answer:

\\

☞Volume of Cylinder (in Litres ) = 0.924 Litres

\\\\

Given:

\\☞\tt Height \:of\: Cylinder\: =\: 24 \:cm

☞\tt Diameter\: of \:base\: of \:Cylinder \:=\: 7 \:cm

\\\\

Concept:

\\

  • Volume of Cylinder = \pi r^2 h
  • Diameter = 2 * radius
  • 1 Litres = 1000 cm^3

\\\\

✨To Find:

\\

Volume of cylinder with above given information in litres

\\\\

Explanation:

\\

We know that,

☞Diameter = 2 * radius

☞Radius = \dfrac{Diameter}{2}\\

Given,

Diameter = 7 cm

Radius = \dfrac{7}{2} cm

Radius = 3.5 cm

\\

Substituting the given values:

\\

Volume = \dfrac{22}{7}\times3.5\times3.5\times24\: cm^3

Volume = 22\times0.5\times3.5\times24\:cm^3

Volume = 11\times84\:cm^3

Volume = 924 cm^3

\\

We know that,

1 Litres = 1000 cm^3

1 cm^3=\dfrac{1}{1000}\:Litres

\therefore\:924\:cm^3\:=\:0.924\:Litres

Therefore, the answer is 0.924 cm^3

\\\\

Other Formulas of

Cylinder:

\\

Lateral Surface Area= 2πrh

Total Surface Area = 2πr(h + r)

\\\\

Formulas of Hollow Cylinder:

\\

Let the external radius , internal radius and height of a hollow cylinder be R , r and h respectively.

\\

  • Thickness of Hollow Cylinder = R-r

\\

  • Area of cross section = \pi (R^2-r^2)

\\

  • External Curved Surface Area = 2πRh

\\

  • Internal Curved Surface Area = 2πrh

\\

  • Total Surface Area = external curved surface area + internal curved surface area + area of two ends

\:\:\:\:\:\:\:\:\:= 2πRh + 2πrh + 2π(R^2-r^2)

\:\:\:\:\:\:\:\:\:= 2π(Rh + rh + R^2-r^2)

\\

  • Volume of material used = πR^2h - πr^2h

\:\:\:\:\:\:\:\:\:= πh(R^2-r^2)

\\\\

Answered by sk181231
0

Answer:

Answer:✨

\begin{gathered}\\\end{gathered}

☞Volume of Cylinder (in Litres ) = 0.924 Litres

\begin{gathered}\\\\\end{gathered}

✨Given:✨

\begin{gathered}\\☞\tt Height \:of\: Cylinder\: =\: 24 \:cm\end{gathered}

☞HeightofCylinder=24cm

☞\tt Diameter\: of \:base\: of \:Cylinder \:=\: 7 \:cm☞DiameterofbaseofCylinder=7cm

\begin{gathered}\\\\\end{gathered}

Concept:✨

\begin{gathered}\\\end{gathered}

Volume of Cylinder = \pi r^2 hπr

2

h

Diameter = 2 * radius

1 Litres = 1000 cm^3cm

3

\begin{gathered}\\\\\end{gathered}

✨To Find:✨

\begin{gathered}\\\end{gathered}

Volume of cylinder with above given information in litres

\begin{gathered}\\\\\end{gathered}

Explanation:✨

\begin{gathered}\\\end{gathered}

We know that,

☞Diameter = 2 * radius

☞Radius = \begin{gathered}\dfrac{Diameter}{2}\\\end{gathered}

2

Diameter

Given,

Diameter = 7 cm

Radius = \dfrac{7}{2}

2

7

cm

Radius = 3.5 cm

\begin{gathered}\\\end{gathered}

Substituting the given values:

\begin{gathered}\\\end{gathered}

Volume = \dfrac{22}{7}\times3.5\times3.5\times24\: cm^3

7

22

×3.5×3.5×24cm

3

Volume = 22\times0.5\times3.5\times24\:cm^322×0.5×3.5×24cm

3

Volume = 11\times84\:cm^311×84cm

3

Volume = 924 cm^3cm

3

Litres = 1000 cm^3cm

3

1 cm^3=\dfrac{1}{1000}\:Litrescm

3

=

1000

1

Litres

\therefore\:924\:cm^3\:=\:0.924\:Litres∴924cm

3

=0.924Litres

Therefore, the answer is 0.924 cm^3cm

3

\begin{gathered}\\\\\end{gathered}

Other Formulas of

Cylinder:✨

\begin{gathered}\\\end{gathered}

Lateral Surface Area= 2πrh

Total Surface Area = 2πr(h + r)

\begin{gathered}\\\\\end{gathered}

⭐Formulas of Hollow Cylinder:⭐

\begin{gathered}\\\end{gathered}

Let the external radius , internal radius and height of a hollow cylinder be R , r and h respectively.

\begin{gathered}\\\end{gathered}

Thickness of Hollow Cylinder = R-r

\begin{gathered}\\\end{gathered}

Area of cross section = \pi (R^2-r^2)π(R

2

−r

2

)

\begin{gathered}\\\end{gathered}

External Curved Surface Area = 2πRh

Internal Curved Surface Area = 2πrh

\begin{gathered}\\\end{gathered}

Total Surface Area = external curved surface area + internal curved surface area + area of two ends

\:\:\:\:\:\:\:\:\: = 2πRh + 2πrh + 2π(R^2-r^2R

2

−r

2

)

\:\:\:\:\:\:\:\:\: = 2π(Rh + rh + R^2-r^2R

2

−r

2

)

\begin{gathered}\\\end{gathered}

Volume of material used = πR^2R

2

h - πr^2r

2

h

\:\:\:\:\:\:\:\:\: = πh(R^2-r^2R

2

−r

2

)

\begin{gathered}\\\\\end{gathered}

Similar questions