Math, asked by harshparmar2910, 3 months ago

in a distribution the difference of the lower and upper quartiles is 15 and their sum is 35 the median is 20 then coefficient of skewness is​

Answers

Answered by mathdude500
8

\begin{gathered}\begin{gathered}\bf \:Given - \begin{cases} &\sf{Q_{3} - Q_{1} = 15} \\ &\sf{Q_{3} + Q_{1} = 35}\\ &\sf{median \: Q_{2}  \: or \: M \: = 20} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf \: To\:find - \begin{cases} &\sf{coefficient \: of \: skewness}  \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

 \sf \: Coefficient  \: of  \: skewness, S_{k} = \dfrac{Q_{3} + Q_{1} - 2M}{Q_{3} - Q_{1}}

where,

  \:  \:  \:  \:  \:  \:  \:  \: \bull \sf \: Q_{1} = lower \: quartile

  \:  \:  \:  \:  \:  \:  \:  \: \bull \sf \: Q_{3} = upper \: quartile

  \:  \:  \:  \:  \:  \:  \:  \: \bull \sf \: Q_{2}  \: or \: M= median

\large\underline{\bold{Solution-}}

Given that

  \:  \:  \:  \:  \:  \:  \:  \: \bull \sf \: Q_{3} + Q_{1} = 35

  \:  \:  \:  \:  \:  \:  \:  \: \bull \sf \: Q_{3}  -  Q_{1} = 15

  \:  \:  \:  \:  \:  \:  \:  \: \bull \sf \: M = 20

Now,

 \sf \: Coefficient  \: of  \: skewness, S_{k} = \dfrac{Q_{3} + Q_{1} - 2M}{Q_{3} - Q_{1}}

On substituting all the values, we get

 \sf \: Coefficient \:  of  \: skewness, S_{k} = \dfrac{35 - 2 \times 20}{15}

\sf \: Coefficient \:  of  \: skewness, S_{k} = \dfrac{35 - 40}{15}

\sf \: Coefficient \:  of  \: skewness, S_{k} =  -  \: \dfrac{5}{15}

\sf \: Coefficient \:  of  \: skewness, S_{k} =  -  \: \dfrac{1}{3}

Additional Information

1. Pearson’s Coefficient of Skewness using the mode. The formula is:

 \boxed{ \sf{Coefficient \:  of  \: skewness, S_{k} = \dfrac{mean - mode}{standard \: deviation} }}

2. Pearson’s Coefficient of Skewness using the median. The formula is:

 \boxed{ \sf{Coefficient \:  of  \: skewness, S_{k} = \dfrac{3(mean - median)}{standard \: deviation} }}

3. Properties of Skewness :-

  • The direction of skewness is given by the sign.

  • The coefficient compares the sample distribution with a normal distribution. The larger the value, the larger the distribution differs from a normal distribution.

  • A value of zero means no skewness at all.

  • A large negative value means the distribution is negatively skewed.

  • A large positive value means the distribution is positively skewed.

Similar questions