Math, asked by SakethGuru6710, 1 year ago

In a factory, the production of motorcycles increased from 10000 units to 13310 units in 3 years. Find the annual rate of growth

Answers

Answered by dheerajk1912
15

The annual rate of growth is 10%.

Step-by-step explanation:

  • Given data

        Time (T) = 3 years

        Starting production (P) = 10000 units

        Final production (A) = 13310 units

        Let annual rate of growth compound annually = R %

  • From relation

        \mathbf{A=P\left ( 1+\frac{R}{100} \right )^{T}}

        On putting respective value in above equation, we get

        \mathbf{13310=10000\left ( 1+\frac{R}{100} \right )^{3}}

       This can be written as

       \mathbf{\left ( 1+\frac{R}{100} \right )^{3}=\frac{13310}{10000}}

       \mathbf{\left ( 1+\frac{R}{100} \right )^{3}=\frac{1331}{1000}}

  • On taking cube root on both side, we get

       \mathbf{1+\frac{R}{100}=\frac{11}{10}}

       So

     \mathbf{\frac{R}{100}=\frac{11}{10}-1}

     \mathbf{\frac{R}{100}=\frac{11-10}{10}}

     \mathbf{\frac{R}{100}=\frac{1}{10}}

     \mathbf{R=\frac{100}{10}}

    R =10 %

Answered by srose
2

Answer:

10%

Step-by-step explanation:

thank you....

Similar questions