In a figure ABC is a right triangle with angle B = 90. AB = 5cm and AC = 13cm Find:- 1. sinC 2. cosC
3. tanA
4. secA
5. Sin^2A - cos^2A
6. sec^C - tan^2C
Answers
In ∆ABC
BC² = AC² - AB²
BC² = (13)² - (5)²
BC² = 169 - 25
BC² = 144
BC = √144
BC = 12 cm
★Now we have :-
AB = 5 cm , BC = 12 cm and AC = 13 cm
5. sin²A - cos²A
6. sec²C - tan²C
= 1
*Refer the attachment for figure.
GIVEN : ABC is a triangle having right angled at B. AB = 5 cm and AC = 13 cm
FIND : 1) sinC
2) cosC
3) tanA
4) secA
5) sin²A - cos²A
6) sec²C - tan²C
Solution :
In ABC
By Pythagoras Theorem
=> H² = P² + B²
=> AC² = AB² + BC²
=> AC² - AB² = BC²
=> BC² = AC² - AB²
=> BC² = (13)² - (5)²
=> BC² = 169 - 25
=> BC² = 144
=> BC = 12 cm
_______________________________
1) sinC = P/H
=> AB/AC = 5/13
2) cosC = B/H
=> BC/AC= 12/13
3) tanA = P/B
=> BC/AB = 12/5
4) secA = H/B
=> AC/AB = 13/5
5) sin²A - cos²A = (BC/AC)² - (AB/AC)²
=> (12/13)² - (5/13)²
=> 144/169 - 25/169
=> (144 - 25)/169
=> 119/169
6) sec²C - tan²C = (AC/BC)² - (AB/BC)²
=> (13/12)² - (5/12)²
=> 169/144 - 25/144
=> (169 - 25)/144
=> 144/144
=> 1
________________________________