Math, asked by arunsharmah4, 7 months ago

in a figure, if LM = MR and angle MLQ = angle MNR = 90°. prove that PQ = PR​

Answers

Answered by mohit810275133
2

Step-by-step explanation:

HEY MATE ........

given \:  \\ lm \:  = mr \: and \: angle \: mlq =  < mnr = 90 \:  \\  \\ to \: be \: proved \:  \\  \\   pq = pr \\  \\ solution \: \\  \\  qm = mr \:  \\ in \: triangle \: lmq \: and \: triangle \: mnr \\  \\ lq =  \sqrt{ {qm}^{2} }  -  {ml}^{2}  \\  =  {mr}^{2}  -  {mn}^{2}  \\  \\  =  {nr}^{2}  = nr......(1)eqn \\  \\ lq = nr(from \: (1)eqn) \\  \\ qm = mr(given) \\  \\ ml = mn(given) \\  \\ hence \: triangle \: lmq = triangle \: mnr(by \: sss \: rule \: ) \\  \\ lp = ( \sqrt{ {mp}^{2} }  -  {ml}^{2} ) \\  \\  =  ({mp}^{2}  -  {mn}^{2} ) =  \sqrt{ {np}^{2} }  = np.......(2) \\  \\ from \: (1) \: and \: (2) \: we \: add \\  \\ lq + lp = rn + np = pq = pr \\  \\  \\ hence \: proved \:

HOPE IT HELPS YOU

Attachments:
Similar questions