in a figure quadrilateral ABCD is circumscribed with center O and AD is perpendicular to AB .Radius of circle is 10 cm find the value of x
Answers
Answered by
1
Given
- O centre of circle .
- ABCD = Quadrilateral.
- radius of circle = 10cm.
- ∠BAD = 90°.
- AB, BC, CD and AD touch the inscribed circle at P, Q, R and S respectively.
- CR = 27cm.
- BC = 38cm.
To Find :-
- AB = x = ?
Solution :-
given that,
→ ∠BAD = 90°.
So,
→ OSAP is a square with side equal to radius = 10cm.
Than,
→ AP = 10cm.
Now,
→ CR = CQ. (Tangent segments to a circle from the same external point are congruent.)
So,
→ CQ = 27cm.
Than,
→ BQ = CB - CQ
→ BQ = 38 - 27
→ BQ = 11 cm.
again,
→ PB = BQ (Tangent segments to a circle from the same external point are congruent.)
Therefore,
→ PB = 11cm.
Hence,
→ AB = AP+BP =
→ x = 10 + 11
→ x = 21 cm.(Ans.)
Learn more :-
*एक वृत्त पर एक बिंदु Q से खींची गयी स्पर्श रेखा की लंबाई 24 सेमी है तथा Q की केंद्र से दूरी 25 सेमी है। वृत्त की त्रिज्...
https://brainly.in/question/25249085
यदि एक छात्र एक वृत्त को चार बराबर भागों में विभाजित करता है तो वह होगा
https://brainly.in/question/26021103
Attachments:
Similar questions