Math, asked by merikadkhar2, 1 month ago

In a fraction, twice the number is 2 more than the denominator. If 3 is added to the numerator and to the denominator, the new fraction is 2/3.Find the original fraction.​

Answers

Answered by ripinpeace
2

 \rm{  \bf\dfrac{7}{12} }

Step-by-step explanation:

Correct question -

  • In a fraction, twice the numerator is 2 more than the denominator. If 3 is added to thenumerator and to the denominator, the new fraction is 2/3.Find the original fraction.

Given -

  • In a fraction, twice the number is 2 more than the denominator.
  • If 3 is added to the numerator and to the denominator, the new fraction is 2/3.

To find -

  • The original fraction.

Concept -

  • Here, we'll use the concept of linear equations in two variables to solve the question. Let's do it!!

Solution -

 \rm{Let  \: the \:  fraction  \: be  \:  \dfrac{x}{y} }

According to the first condition,

 \longmapsto \rm{ \bf2x = y + 2 }

 \longmapsto \rm{ { \underline \green{\bf2x  - 2= y } \:  \:  \:  \:  \:  \:    \:  \: (1) }}

Now, according to the second condition,

 \longmapsto  \rm{  \bf\dfrac{x + 3}{y + 3  }  =  \dfrac{2}{3} }

\longmapsto  \rm{  \bf  (x + 3)3}   \bf \: = ( y + 3)2

\longmapsto  \rm{  \bf  3x + 9 = 2y + 6}

{\longmapsto  \rm{  \bf  3x + 9 = 2(2x - 2) + 6 \:  \:  \:  \:  \:  \{from(1) \}}}

{\longmapsto  \rm{  \bf  3x + 9 = 4x - 4 + 6}}

{\longmapsto  \rm{  \bf  3x + 9 = 4x  + 2}}

{\longmapsto  \rm{  \bf   9 - 2 = 4x   - 3x}}

{\longmapsto  \rm{   \bf {\underline   \orange{ 7 \: = \:  x}}}} \:  \:  \:  \:  \:  \:  \:  \rm \{putting \: in \: (1) \}

 \longmapsto \rm{ \bf2(7) - 2 = y}

 \longmapsto \rm{ \bf14- 2 = y}

 \longmapsto \rm{ \bf \underline \pink{12 = y}}

 \rm{ \bf{ \red{Therefore, \:  the  \: fraction  \: is  \:  \dfrac{7}{12} }}}

Similar questions