Physics, asked by AllFatherOdin, 6 hours ago

In a frictionless pulley, 2 masses x and y hang.

Also, x > y

Find the tension on system and acceleration of system if acceleration due to gravity is g.



Right answer will be marked brainliest

Answers

Answered by rp9861774
0

Answer:

Calculate the tension in the rope using the following equation: T = M x A. Four example, if you are trying to find T in a basic pulley system with an attached mass of 9g accelerating upwards at 2m/s² then T = 9g x 2m/s² = 18gm/s² or 18N (newtons).

Explanation:

if the answer was helpful/useful pls mark me as the brainliest

Answered by itzMeGunjan
7

According to Question, x is heavier than y ,so x will in downward direction & y in upward direction because x is greater or heavier than y .

Acceleration (a) will be be same because both are tension with same chain .

★ Let the tension is T and the weight of y is yg & weight of x is xg.

 \mathtt{   \underline{\:  \:  \:  \:  \:  \:  \:  \: \: from \: \:  \underline{ Newton \: 2 {}^{nd} \: law}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \large  \dashrightarrow\boxed{ \red{ \mathrm{f_{net} = m⋅a}}}

Where,

  • f = net force in body
  • m = mass
  • a = acceleration

now, using the formula for

Block - x

 \:  \:  \:  \:  \:  \:\rightarrow \boxed{   \bf{xg - T = x⋅a}} -  - (1)

Block - y

 \rm{  + yg -T = y( - a)} \\ \rm{ yg -T =  - ya} \\   \rm{ \cancel- (  T - yg) }=  \cancel - ya\\  \:  \:  \:  \:  \:  \: \rightarrow \boxed{  \bf{ T - yg = y⋅a}} -  - (2)

From equation (1) and (2)

 \:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:\rm{xg - \cancel{T} = xa}\\\:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \: \rm{\cancel{T} - yg = ya}

\:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:▬▬▬▬▬▬▬\:  \:  \:  \:  \:  \:\:  \:  \:  \:  \:  \:

\rm{xg-yg=xa+ya}\\\:  \:  \:  \:  \:  \: \rm {g(x-y)=a(x+y)}\\ \dashrightarrow \boxed{\mathtt{\green{a_{(acceleration)}=\frac{(x-y)g}{(x+y)}}}}

Tension :

from equation (1)

\mathtt{xg-T=xa}\\ \mathtt{T=xg-xa}\\ \mathtt{T=\mathtt{xg - x\frac{(x-y) g}{(x+y) }}}\\ \mathtt{T=\frac{xg(x+y)-x(x-y)g}{x+y}}\\ \mathtt{T=\frac{\cancel{x²g}+xyg\cancel{-x²g}+xyg}{x+y}}\\ \mathtt{T=\frac{xyg+xyg}{x+y}}\\ \dashrightarrow \mathtt{ \boxed{\mathtt{\green{\frac{2xyg}{x+y}}}}}

Attachments:
Similar questions