Math, asked by at5774642, 7 hours ago

In a G.P, the 5th term exceeds the 4th term by 24, and the 4th term exceeds the 3rd term by 8, find the common ratio and the first term.​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Let assume that

➢ First term of a GP series is a

➢ Common ratio of GP series is r

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an geometric sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\: {ar}^{n - 1} }}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

r is the common ratio.

Tʜᴜs,

According to statement,

\rm :\longmapsto\:a_5 - a_4 = 24

\rm :\longmapsto\: {ar}^{5 - 1} -  {ar}^{4 - 1}  = 24

\rm :\longmapsto\: {ar}^{4} -  {ar}^{3}  = 24

\rm :\longmapsto\: {ar}^{3}(r - 1)  = 24 -  -  -  - (1)

Again, According to statement

\rm :\longmapsto\:a_4 - a_3 = 8

\rm :\longmapsto\:{ar}^{3} -{ar}^{2} = 8

\rm :\longmapsto\:{ar}^{2}(r - 1) = 8 -  -  -  - (2)

On dividing equation (1) by (2), we get

\rm :\longmapsto\:\dfrac{{ar}^{3}(r - 1)}{{ar}^{2}(r - 1)}  = 3

\rm\implies \:\boxed{\tt{  \:  \: r = 3 \:  \: }} \\

On substituting the value of r in equation (2), we get

\rm :\longmapsto\: 9a(3 - 1) = 8

\rm :\longmapsto\: 18a= 8

\rm\implies \:\boxed{\tt{  \:  \: a \:  =  \:  \frac{4}{9} \:  \: }}

Hence

\begin{gathered}\begin{gathered}\bf\:\rm\implies \:\begin{cases} &\sf{r \:  =  \: 3 \: } \\ \\  &\sf{a \:  =  \:  \dfrac{4}{9}  \: } \end{cases}\end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

↝ Sum of n  terms of an arithmetic sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{S_n\:=\dfrac{a \: ( {r}^{n}  \:  -  \: 1)}{r \:  -  \: 1}\bigg)}}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

Sₙ is the sum of n terms of AP.

a is the first term of the sequence.

n is the no. of terms.

r is the common ratio.

Answered by OoAryanKingoO78
4

Answer:

\large\underline{\sf{Solution-}}

Let assume that

➢ First term of a GP series is a

➢ Common ratio of GP series is r

Wᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ,

↝ nᵗʰ term of an geometric sequence is,

\begin{gathered}\red\bigstar\:\:{\underline{\orange{\boxed{\bf{\green{a_n\:=\: {ar}^{n - 1} }}}}}} \\ \end{gathered}

Wʜᴇʀᴇ,

aₙ is the nᵗʰ term.

a is the first term of the sequence.

n is the no. of terms.

r is the common ratio.

Tʜᴜs,

According to statement,

\rm :\longmapsto\:a_5 - a_4 = 24

\rm :\longmapsto\: {ar}^{5 - 1} -  {ar}^{4 - 1}  = 24

\rm :\longmapsto\: {ar}^{4} -  {ar}^{3}  = 24

\rm :\longmapsto\: {ar}^{3}(r - 1)  = 24 -  -  -  - (1)

Again, According to statement

\rm :\longmapsto\:a_4 - a_3 = 8

\rm :\longmapsto\:{ar}^{3} -{ar}^{2} = 8

\rm :\longmapsto\:{ar}^{2}(r - 1) = 8 -  -  -  - (2)

On dividing equation (1) by (2), we get

\rm :\longmapsto\:\dfrac{{ar}^{3}(r - 1)}{{ar}^{2}(r - 1)}  = 3

\rm\implies \:\boxed{\tt{  \:  \: r = 3 \:  \: }} \\

On substituting the value of r in equation (2), we get

\rm :\longmapsto\: 9a(3 - 1) = 8

\rm :\longmapsto\: 18a= 8

\rm\implies \:\boxed{\tt{  \:  \: a \:  =  \:  \frac{4}{9} \:  \: }}

Hence

\begin{gathered}\begin{gathered}\bf\:\rm\implies \:\begin{cases} &\sf{r \:  =  \: 3 \: } \\ \\  &\sf{a \:  =  \:  \dfrac{4}{9}  \: } \end{cases}\end{gathered}\end{gathered}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions