In a geometric progression consisting of positive terms, each term equals the sum of the next two terms. Then the common ratio of its progression is equals
Answers
Answer:
option (b) is correct
Step-by-step explanation:
Formula used:
The n th term of the G.P
Given:
Then,
since the G.P consisting positive terms, r is positive
Therefore,
Step-by-step explanation:
r=21(5−1)
option (b) is correct
Step-by-step explanation:
Formula used:
The n th term of the G.P
a,ar,ar^2.......\:is\:t_n=ar^{n-1}a,ar,ar2.......istn=arn−1
Given:
t_n=t_{n+1}+t_{n+2}tn=tn+1+tn+2
ar^{n-1}=ar^{n}+ar^{n+1}arn−1=arn+arn+1
ar^{n-1}=a[r^{n}+r^{n+1}]arn−1=a[rn+rn+1]
r^{n}r^{-1}=r^{n}+r^n.rrnr−1=rn+rn.r
r^{n}r^{-1}=r^n[1+r]rnr−1=rn[1+r]
r^{-1}=1+rr−1=1+r
\frac{1}{r}=1+rr1=1+r
1=r+r^21=r+r2
r^2+r-1=0r2+r−1=0
Then,
r=\frac{-b+\sqrt{b^2-4ac}}{2a}\:and\:r=\frac{-b-\sqrt{b^2-4ac}}{2a}r=2a−b+b2−4acandr=2a−b−b2−4ac
r=\frac{-1+\sqrt{1^2-4(1)(-1)}}{2(1)}\:and\:r=\frac{-1-\sqrt{1^2-4(1)(-1)}}{2(1)}r=2(1)−1+12−4(1)(−1)andr=2(1)−1−12−4(1)(−1)
r=\frac{-1+\sqrt{1+4}}{2}\:and\:r=\frac{-1-\sqrt{1+4}}{2}r=2−1+1+4andr=2−1−1+4
r=\frac{-1+\sqrt{5}}{2}\:and\:r=\frac{-1-\sqrt{5}}{2}r=2−1+5andr=2−1−5
since the G.P consisting positive terms, r is positive
Therefore,
r=\frac{-1+\sqrt{5}}{2}r=2−1+5
r=\frac{\sqrt{5}-1}{2}r=25−1
r=\frac{1}{2}(\sqrt{5}-1)r=21(5