Math, asked by RamanaaMMSR, 11 months ago

In a Geometric progression first term is 2, common ratio is 3 and Sn= 6560. Find the value of n.​

Answers

Answered by rishu6845
4

Answer:

n \:  =  \: 8

Step-by-step explanation:

Given---->

for \: a \: geoetric \: progression \: first \: term \: is \: 2 \\  \: common \: ratio \: is \: 3 \: and \: sum \: of \: n \: terms \: is \: 6560

To find---->

value \: of \: n \:

Concept used---->

sum \: of \: n \: terms \:  =  \dfrac{a( {r}^{n}  - 1)}{(r - 1)}

Solution---->

a = 2 \:  \\ r \:  = 3 \\ sum \: of \: n \: terms \:  = 6560

now \:

sum \: of \: n \: terms \:  =  \dfrac{a( {r}^{n} - 1) }{(r - 1)}

 =  > 6560 \:  =  \dfrac{2 \: ( \:  {3}^{n} - 1 \: ) }{( \: 3 - 1 \: )}

 =  > 6560 \:  =  \dfrac{2 \: ( \:  {3}^{n} \:  -  \: 1 \: ) }{2}

 =  > 6560 \:  =  {3}^{n}  \:  -  \: 1

 =  >  {3}^{n}  \:  = 6560 \:  +  \: 1

 =  >  {3}^{n}  \:  = 6561

 =  >  {3}^{n}  \:  = \:   {3}^{8}

 comparing \: exonent \: from \: both \: sides \:

 =  > n \:  =  \: 8

Additional information---->

1)

nth \: term \: of \: a \: gp \:  \\  = a \:  {r}^{n - 1}

2)

sum \: of \: infinite \: terms \: of \: gp \\  =  \dfrac{a}{( \: 1 - r \: )}

Similar questions