In a given figure PQ and PR are tangents to the circle with centre O such that angle QPR=50 Degree.Find angle OQR
Answers
Answered by
110
hope it helps you.......
Attachments:
Answered by
2
The angle OQR is 25°.
Given:
Angle QPR=50°
To find:
Angle OQR
Solution:
The radius is perpendicular to the given tangents PQ and PR.
Angle OQP=Angle ORP=90°
In quadrilateral PROQ,
Angle OQP+Angle ORP+angle QPR+Angle ROQ=360°
Using values,
90°+90°+50°+angle ROQ=360°
Angle ROQ+360°-230°
Angle ROQ=130°
Now, in ΔQOR,
OQ=OR (circle's radius)
So, angle OQR=angle ORQ
Angle OQR+Angle ORQ+angle ROQ=180°
2(Angle OQR)+130°=180°
2(Angle OQR)=180°-130°
2(Angle OQR)=50°
Angle OQR=50°/2
Angle OQR=25°
Therefore, the angle OQR is 25°.
Attachments:
Similar questions