Math, asked by jsprqtfnagycsqsfbs, 10 months ago

In a given Triangle, if AD = 7; Angle B = 30, Angle ADC = 90, and angle C = 60, then find BC length

Attachments:

Answers

Answered by avantiraj999
1

Answer:

28/√3

Step-by-step explanation:

from∆ADC

<C=60°

AD=7cm=p

DC=b

 = &gt;  \tan60  =  \frac{p}{b }  \\  = &gt;  \sqrt{3}  =  \frac{7}{b }  \\  = &gt; b =  \frac{7}{ \sqrt{3} }

Again:-

∆ADB

AD=7cm

<B=30°

 \tan30 =  \frac{p}{b}  \\  = &gt;  \frac{1}{ \sqrt{3} }  =  \frac{7}{b}   \\  = &gt; b = 7 \sqrt{3}

now BC=BD+DC

 = &gt;  \frac{7}{ \sqrt{3} }  + 7 \sqrt{3}  \\  = &gt;  \frac{7 + 7 \times 3}{ \sqrt{3} }  \\  = &gt;  \frac{7 + 21}{ \sqrt{3} }  \\  =  &gt;  \frac{28}{ \sqrt{3} }  \\  =  &gt; 28 \times 1.732 = 48.496

Similar questions