Math, asked by venkataraodegala92, 10 months ago

in a gp,2nd term is 24,5th term is 1280.find common ratio.​

Answers

Answered by BrainlyConqueror0901
1

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Common\:ratio=3.76}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies Second \: term = 24 \\  \\ \tt:  \implies Fifth \: term = 1280 \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies  Common \: ratio = ?

• According to given question :

 \circ \:  \tt{Let \: numbers \: of \: G.P \: be \: a,ar,a {r}^{2},a {r}^{3},..,{ar}^{n}}    \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies Second \: term = 24 \\  \\  \tt:  \implies  ar = 24 \\  \\  \tt:  \implies a =  \frac{24}{r}  -  -  -  -  - (1) \\  \\  \bold{For \: 5th \: term} \\  \tt:  \implies  a_{5} = 1280 \\  \\  \tt:  \implies a {r}^{4}  = 1280 \\  \\  \tt:  \implies a =  \frac{1280}{ {r}^{4} }  -  -  -  -  - (2) \\  \\  \text{from \: (1) \: and \: (2)} \\  \tt:  \implies  \frac{24}{r}  =  \frac{1280}{ {r}^{4} }  \\  \\  \tt:  \implies  \frac{ {r}^{4} }{r}  =  \frac{1280}{24}  \\  \\  \tt:  \implies  {r}^{3}  =  53.34 \\  \\  \tt:  \implies r =   \sqrt[3]{53.34}  \\  \\  \green{\tt:  \implies r =3.76}

Answered by Saby123
0

</p><p>\tt{\huge{\pink{Hello!!! }}}

</p><p>\tt{\red{Given \: - }}

 \tt{ \orange{ar = 24}}........(1)

 \tt{ \blue{a {r}^{4}  = 1280 \: }} \: ..........(2)

Dividing (2) by (1) we Get =>

 \tt{ \purple{ \implies{ {r}^{3} =   \dfrac{1280}{24}}}}  \\  \\     =  &gt;  \tt{ \red{r = 3.76}}

Similar questions