In a gp of real number it is given that t1 t2 t3 t4= 30 t1 squares t2 square t3 square t4 sqare=340 determine the first term and common ratios
Answers
Answer:
first term = 2
Common Ratio = 2
Step-by-step explanation:
Let sat first term = a
common ratio = r
t₁ = a t₁² = a²
t₂ = ar t₂² = (ar)²
t₃ = ar² t₃² = (ar²)²
t₄ = ar³ t₄² = (ar³)²
t₁ + t₂ +t₃ + t₄ = a + ar + ar² + ar³ = 30 => a(1 + r + r² + r³) = 30
=> a(1 + r²)(1 + r) = 30
squaring both sides
=> a²(1 + r²)²(1 + r)² = 900
t₁²+ t₂² + t₃² + t₄² = a² + (ar)² + (ar²)² + (ar³)² = 340 => a²(1 + r² + r⁴ + r⁶) = 340
=> a² (1 + r⁴)(1 + r²) = 340
a²(1 + r²)²(1 + r)² / a² (1 + r⁴)(1 + r²) = 900/340
=> (1 + r²)(1 + r)² / (1 + r⁴) = 45/17
=> 17 (r²+ 1)(r² + 2r + 1)= 45 (1 + r⁴)
=> 17( r⁴ + 2r³ + 2r² + 2r + 1) = 45 + 45r⁴
=> 28r⁴ - 34r³ - 34r² - 34r + 28 = 0
=> (r - 2)(28r³ + 22r² + 10r - 14) = 0
=> r = 2
a(1 + r²)(1 + r) = 30
=> a(1 + 4)(1 + 2) = 30
=> a = 2
first term = 2
Common Ratio = 2
2 + 4 + 8 + 16 = 30
4 + 16 + 64 + 256 = 340