Math, asked by nikitabalkar13, 11 months ago

in a GP the fourth term is 48 and the eighth term is 768. find the tenth term​

Answers

Answered by Anonymous
3

 \large \underline{ \underline{ \sf \: Solution : \:  \:  \: }}

Given ,

  \star \:  \:   \sf 4th  \: term \:  of \:  GP = 48 \\  \to \sf a {r}^{3} = 48 \:  ------- \:eq(i)  \\  \\   \star \: \: \sf</p><p>8th  \: term  \: of  \: GP = 768 \\   \sf   \to a {r}^{7} = 768\:  ------ \:eq(ii)

Dividing equation (ii) and (i) , we get ,

\to \sf  \frac{a {r}^{7} }{a {r}^{3} }=  \frac{768}{48} </p><p> \\  \\ \to \sf</p><p> {r}^{4}  = 16</p><p> \\  \\  \to \sf</p><p> r = 2

Putting r = 2 in eq (i) , we get ,

 \to \sf a {r}^{3} = 48 \\  \\ </p><p> \to \sf </p><p>a  \times {(2)}^{3} = 48</p><p></p><p> \\  \\ \to \sf  a  \times 8 = 48</p><p></p><p> \\  \\ \to \sf   a = 6

Now ,

\to \sf 10th \:  term  = a {r}^{9}  \\  \\   \to \sf 10th  \: term = 6 \times  {(2)}^{9}  \\  \\  \to \sf</p><p>10th \:  term = 6 × 512</p><p> \\  \\   \to \sf </p><p>10th  \: term = 3072

Hence , the required number is 3072

Similar questions