In a group of 50 students the number of students studying French English and Sanskrit was found to be as follows friend 17 English 13 Sanskrit 15 French and English 9 English and French for French and Sanskrit 5 English French and Sanskrit 3 find the number of students who study ,at least one of these language , French language, French and Sanskrit but not English ,more than one language, none of this language ,exactly one language
Answers
Answer:
【h】【e】【y】
Step-by-step explanation:
Let F be the set of students who study French, E be the set of students who study English and S be the set of students who study Sanskrit.
Then, n{U) = 50, n(F) =17, n{E) = 13, and n{S) = 15,
n(F ∩ E) = 9, n(E ∩ S) = 4, n(F ∩ S) = 5, n(F ∩ E ∩ S) = 3
(i) Number of students studying French only = e = 6
(ii) Number of students studying English only = g = 3
(iii) Number of students studying Sanskrit only =f= 9
(iv) Number of students studying English and Sanskrit but not French = c = 1
(v) Number of students studying French and Sanskrit but not English = d = 2
(vi) Number of students studying French and English but not Sanskrit = b = 6
(vii) Number of students studying at least one of the three languages = a + b + c + d + e+f+g = 30
(viii) Number of students studying none of the three languages but not French = 50-30 = 20
answer:-
Let F be the set of students who study French, E be the set of students who study English and S be the set of students who study Sanskrit.
Then, n{U) = 50, n(F) =17, n{E) = 13, and n{S) = 15,
n(F ∩ E) = 9, n(E ∩ S) = 4, n(F ∩ S) = 5, n(F ∩ E ∩ S) = 3
(i) Number of students studying French only = e = 6
(ii) Number of students studying English only = g = 3
(iii) Number of students studying Sanskrit only =f= 9
(iv) Number of students studying English and Sanskrit but not French = c = 1
(v) Number of students studying French and Sanskrit but not English = d = 2
(vi) Number of students studying French and English but not Sanskrit = b = 6
(vii) Number of students studying at least one of the three languages = a + b + c + d + e+f+g = 30
(viii) Number of students studying none of the three languages but not French = 50-30 = 20