In a group of 70 people, 37 like coffee, 52 like tea, and each person likes at least one of the two drinks. How many people like both coffee and tea?
Answers
Consider C as the set of people who like coffee
Consider C as the set of people who like coffeeT as the set of people who like tea
n(C ∪ T) = 70
n(C) = 37
n(T) = 52
It is given that
n(C ∪ T) = n(C) + n(T) – n(C ∩ T)
Substituting the values
70 = 37 + 52 – n(C ∩ T)
By further calculation
70 = 89 – n(C ∩ T)
So we get
n(C ∩ T) = 89 – 70 = 19
Therefore, 19 people like both coffee and tea.
Answer:
Consider C as the set of people who like coffee
Consider C as the set of people who like coffeeT as the set of people who like tea
n(C ∪ T) = 70
n(C) = 37
n(T) = 52
It is given that
n(C ∪ T) = n(C) + n(T) – n(C ∩ T)
Substituting the values
70 = 37 + 52 – n(C ∩ T)
By further calculation
70 = 89 – n(C ∩ T)
So we get
n(C ∩ T) = 89 – 70 = 19
Therefore, 19 people like both coffee and tea.