Math, asked by liyanaafra2, 10 months ago

. In a hollow cylinder, the radius of the bigger circle is 21 cm and the radius of the smaller circle is 14 cm. Find the area of the ring. (Take π = 22/7) *

Answers

Answered by raghukate12345643
1

hope it's help you..................

Attachments:
Answered by Anonymous
4

\sf\red{\underline{\underline{Answer:}}}

\sf{The \ area \ of \ ring \ is \ 770 \ cm^{2}}

\sf\orange{Given:}

\sf{In \ a \ hollow \ cone,}

\sf{\implies{Radius \ of \ bigger \ circle(r1)=21 \ cm}}

\sf{\implies{Radius \ of \ smaller \ circle(r2)=14 \ cm}}

\sf\pink{To \ find:}

\sf{The \ area \ of \ the \ ring.}

\sf\green{\underline{\underline{Solution:}}}

\boxed{\sf{Area \ of \ circle=\pi\times \ r^{2}}}

\sf{\therefore{Area \ of \ ring=\pi\times \ r1^{2}-\pi\times \ r2^{2}}}

\sf{\therefore{Area \ of \ ring=\frac{22}{7}\times({21}^{2}-14^{2})}}

\sf{\therefore{Area \ of \ ring=\frac{22}{7}\times(21+14)(21-14)}}

\sf{\therefore{Area \ of \ ring=\frac{22}{7}\times35\times7}}

\sf{\therefore{Area \ of \ ring=22\times35}}

\sf{\therefore{Area \ of \ ring=770 \ cm^{2}}}

\sf\purple{\tt{\therefore{The \ area \ of \ ring \ is \ 770 \ cm^{2}}}}

Similar questions