Math, asked by BrainlyQueer, 1 month ago

In a hot water heating system, there is cylindrical pipe of length 28 m and diameter 5 cm. Find the total radiating surface in the system. (Assume π = 22/7)​

Answers

Answered by llawlliet
52

Answer:

Here's your answer

Step-by-step explanation:

We  \: need \:  to  \: find \:  CSA  \: of  \: Cylinder \\ Height \:  of \:  Cylinder(h) = 28m \\ Radius  \: of \:  circular  \: end  \: of \:  pipe = \frac{5}{2} cm \\  = 2.5cm \\ Total  \:  Radiating  \: Surface \:  of \:  pipe  \\ = CSA + 2 × Area  \: of \:  circular  \: crossection \\ =2πrh+ {2πr}^{2}  \\ =2πr(h+r) \\ 2 \times  \frac{22}{7}  \times 2.5(2800+2.5) \\  {=44039.28cm}^{2}

Answered by MяMαgıcıαη
38

\bf{\dag}\:{\underline{\underline{\sf{Question\::}}}}

  • In a hot water heating system, there is cylindrical pipe of length 28 m and diameter 5 cm. Find the total radiating surface in the system. (Assume π = 22/7)

\bf{\dag}\:{\underline{\underline{\sf{Answer\::}}}}

  • Total radiating surface in the system is 4.4 .

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━

\bf{\dag}\:{\underline{\underline{\sf{Given\::}}}}

  • Length of cylindrical pipe = 28 cm
  • Diameter of cylindrical pipe = 5 cm

\bf{\dag}\:{\underline{\underline{\sf{To\:Find\::}}}}

  • Total radiating surface in the system?

\bf{\dag}\:{\underline{\underline{\sf{Solution\::}}}}

Firstly let's find the radius of a cylindrical pipe. We clearly know that;

\quad\bf{\dag}\:{\underline{\boxed{\sf{\red{Radius = Diameter\:\div\:2}}}}}

\underline{\sf{\bigstar\:Putting\:all\:values\::}}

\\ :\implies\:\sf Radius = 5\:\div\:2

\\ :\implies\:\sf Radius = \dfrac{5}{2}\:cm

Converting radius into meters. We clearly know that;

\quad\bf{\dag}\:{\underline{\boxed{\sf{\pink{1\:m = 100\:cm}}}}}

Therefore,

\\ :\implies\:\sf Radius\:in\:meters = \dfrac{5}{2}\:\div\:100

\\ :\implies\:\sf Radius\:in\:meters = \dfrac{5}{2}\:\times\:\dfrac{1}{100}

\\ :\implies\:\sf Radius\:in\:meters = \dfrac{5\:\times\:1}{2\:\times\:100}

\\ :\implies\:\sf Radius\:in\:meters = {\cancel{\dfrac{5}{200}}}

\\ :\implies\:\sf Radius\:in\:meters = \dfrac{1}{40}\:m

\underline{\underline{\boxed{\sf{\therefore\:Radius\:of\:pipe\:is\:\bf{\dfrac{1}{40}\:m}}}}}

Now, we have to find it's total radiating surface i.e, curved surface area (CSA). We clearly know that,

\quad\bf{\dag}\:{\underline{\boxed{\sf{\purple{CSA_{(cylinder)} = 2\pi rh}}}}}

Where,

  • r denotes radius of cylinder
  • h denotes height of cylinder

We have,

  • Radius of pipe (r) = 5/40 m
  • Height of pipe (h) = 28 m

\underline{\sf{\bigstar\:Putting\:all\:values\::}}

\\ :\implies\:\sf CSA_{(cylinder)} = 2\:\times\:\dfrac{\cancel{22}}{\cancel{7}}\:\times\:\dfrac{1}{\cancel{40}}\:\times\:\cancel{28}

\\ :\implies\:\sf CSA_{(cylinder)} = \cancel{2}\:\times\:\dfrac{11}{1}\:\times\:\dfrac{1}{\cancel{20}}\:\times\:4

\\ :\implies\:\sf CSA_{(cylinder)} = \dfrac{1\:\times\:11\:\times\:4}{10}

\\ :\implies\:\sf CSA_{(cylinder)} = \dfrac{11\:\times\:4}{10}

\\ :\implies\:\sf CSA_{(cylinder)} = \dfrac{44}{10}

\\ :\implies\:\sf CSA_{(cylinder)} = 4.4\:m^2

\underline{\underline{\boxed{\sf{\therefore\:Total\:radiating\:surface\:is\:\bf{4.4\:m^2}}}}}

\:

\bf{\dag}\:{\underline{\underline{\sf{\rm{I}\sf{mportant\:Formulae\::}}}}}

↠ TSA of cube = 6

↠ CSA of cube = 4a²

Volume of cube =

TSA of cuboid = 2(lb + bh + hl)

CSA of cuboid = 2(l + b)h

Volume of cuboid = l × b × h

↠ TSA of cylinder = 2πr(r + h)

↠ CSA of cylinder = 2πrh

↠ Volume of cylinder = πr²h

Volume of hollow cylinder = πh(R²-r²)

TSA of cone = πr(l + r)

CSA of cone = πrl

Volume of cone = 1/3 πr²h

↠ SA of sphere = 4πr²

Volume of sphere = 4/3 πr³

↠ TSA of hemisphere = 3πr²

↠ CSA of hemisphere = 2πr²

↠ Volume of hemisphere = 2/3 πr³

▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions