Chemistry, asked by Shailja111, 1 year ago

In a hydrogen atoms an electron jumps from third orbit to the first orbit. Find the frequency of the spectral lines.

Answers

Answered by kobenhavn
61

Answer: \nu =2.92\times 10^{15}s^{-1}

Explanation: Using Rydberg's Equation:

E=h\times c\times R_H\left(\frac{1}{n_i^2}-\frac{1}{n_f^2} \right )

Where,

E= energy of radiation

h= planck's constant

c= velocity of light

R_H=Rydberg's Constant=1.09\times 10^7m^{-1}

n_f = Higher energy level = 3

n_i = Lower energy level = 1

E=6.6\times 10^{-34}Js\times 3.0\times 10^8m/s\times 1.09\times 10^7m^{-1}\left(\frac{1}{1^2}-\frac{1}{3^2} \right )

E=19.30\times 10^{-19}J

E=h\times \nu

19.30\times 10^{-19}J=6.6\times 10^{-34}Js\times \nu

\nu =2.92\times 10^{15}s^{-1}

Answered by IlaMends
37

Answer:The frequency of the spectral lines 2.9259\times 10^{15} s^{-1}.

Explanation:

Using Rydberg's Equation:

Initial energy level,n_i = 3

Final energy level,n_f = 1

\frac{1}{\lambda }=R_H\left(\frac{1}{n_i^2}-\frac{1}{n_f^2} \right )

\frac{1}{\lambda }=1.0973\times 10^7 m^{-1}\times \left(\frac{1}{3^2}-\frac{1}{1^2} \right )=0.9753\times 10^7 m^{-1}

\nu=\frac{c}{\lambda }=3\times 10^8 m/s\times 0.9753\times 10^7 m^{-1}=2.9259\times 10^{15} s^{-1}

The frequency of the spectral lines 2.9259\times 10^{15} s^{-1}

Similar questions