Math, asked by surbhi877, 1 year ago

In a δabc, p and q are points on sides ab and ac respectively, such that pq || bc. if ap = 2.4 cm, aq = 2 cm, qc = 3 cm and bc = 6 cm, find ab and pq.

Answers

Answered by Anonymous
1
The value of AB is 2.8and the value of PQ will be 3cm
Answered by ᏞovingHeart
44

\Large{\underbrace{\underline{\purple{\sf Required \;  Solution}}}}

\frak{\red{Given:}} \begin{cases} \sf {\orange{ In \triangle ABC,}}\\ \sf {\orange { AP = 2.4 cm}}\\ \sf {\orange {AQ = 2 cm}}\\ \sf  {\orange {QC = 3 cm}}\\\sf{\orange{ BC = 6 cm}} \\\sf {\orange { PQ \;||\; BC}}\end{cases}

\sf Required \; to \;find: AB \; \& \; PQ.

  • By using Thαles Theorem, we hαve [αs it’s given thαt PQ ∥ BC]

       \longmapsto \sf \dfrac{ AP}{PB} = \dfrac{AQ}{ QC}

       \longmapsto \sf \dfrac{2.4}{PB} = \dfrac{2}{3}

       \longmapsto \sf 2 \times PB = 2.4 \times 3

       \longmapsto \sf PB = \dfrac{(2.4 \times 3)}{2\;cm}

       \Longrightarrow \sf PB = 3.6 cm

       

Now finding,

       \longmapsto \sf AB = AP + PB

       \longmapsto \sf AB = 2.4 + 3.6

       \implies \sf {\orange{AB = 6 cm}}

Now, considering ΔAPQ and ΔABC

We hαve,

∠A = ∠A

∠APQ = ∠ABC [ Corresponding αngles αre equαl, PQ || BC αnd AB being α trαnsversαl ]

Thus, ΔAPQ αnd ΔABC αre similαr to eαch other by AA criteriα.

Now, we know thαt

Corresponding pαrts of similαr triαngles αre propositionαl.

       \implies \sf \dfrac{ AP}{AB} = \dfrac{PQ}{ BC}

       \implies \sf PQ = \bigg(\dfrac{AP}{AB}\bigg) \times BC

       \implies \sf \bigg(\dfrac{2.4}{6}\bigg) x 6 = 2.4

        \implies\sf{ \orange{PQ = 2.4 cm.}}

________________

Hope it elps! :)

Attachments:
Similar questions