in a isosceles triangle ABC,A B =AC.The side BA is produced to D such that BA=AD. prove that angle BCD= 90 degree
Answers
Answered by
1
Here is the answer to your question may be this will help you
Thankuu
Thankuu
Attachments:
Answered by
2
Hello mate ^_^
__________________________/\_
AB=AC (Given)
It means that ∠DBC=∠ACB (In triangle, angles opposite to equal sides are equal)
Let ∠DBC=∠ACB=x .......(1)
AC=AD (Given)
It means that ∠ACD=∠BDC (In triangle, angles opposite to equal sides are equal)
Let ∠ACD=∠BDC=y ......(2)
In ∆BDC, we have
∠BDC+∠BCD+∠DBC=180° (Angle sum property of triangle)
⇒∠BDC+∠ACB+∠ACD+∠DBC=180°
Putting (1) and (2) in the above equation, we get
y+x+y+x=180°
⇒2x+2y=180°
⇒2(x+y)=180°
⇒(x+y)=180/2=90°
Therefore, ∠BCD=90°
hope, this will help you.☺
Thank you______❤
_____________________________❤
Attachments:
Similar questions