Math, asked by student2429, 2 months ago

In a legislative assembly election, a political party hired a public relation firm to promote its candidate

in three ways: telephone, house calls and letters. The numbers of contacts of each type in three cities A,

B & C are (500, 1000, 5000), (3000, 1000, 10000) and (2000,1500,4000), respectively. The party paid

Rs.3700, Rs.7200, and Rs.4300 in cities A, B & C respectively. Find the costs per contact using matrix

method. Keeping in mind the economic condition of the country, which way of promotion is better in

your view?​

Answers

Answered by AnkitStar
10

 \huge \colorbox{purple}{solution}

 \large \sf \red{given}

In a Legislative assembly election, a political party hired a public relation firm to promote its candidate in three ways: telephone, house calls and letters.

To find : Find the costs per contact using matrix method.

Solution:

500x + 1000y + 5000z = 3700

300x + 1000y + 10000z = 7200

2000x + 1500y + 4000z = 4300

\begin{gathered}\begin{bmatrix} 500 & 1000 & 5000 \\ 3000 & 1000 & 10000 \\ 2000 & 1500 & 4000 \end{bmatrix}\end{gathered}

500

3000

2000

1000

1000

1500

5000

10000

4000

\begin{gathered}\begin{bmatrix} x \\ y \\ z \end{bmatrix}\end{gathered}

x

y

z

= \begin{gathered}\begin{bmatrix} 3700 \\ 7200 \\ 4300 \end{bmatrix}\end{gathered}

3700

7200

4300

=> 100 \begin{gathered}\begin{bmatrix} 5 & 10 & 50 \\ 30 & 10 & 100 \\ 20 & 15 & 40 \end{bmatrix}\end{gathered}

5

30

20

10

10

15

50

100

40

\begin{gathered}\begin{bmatrix} x \\ y \\ z \end{bmatrix}\end{gathered}

x

y

z

= 100 \begin{gathered}\begin{bmatrix} 37 \\ 72 \\ 43 \end{bmatrix}\end{gathered}

37

72

43

=> \begin{gathered}\begin{bmatrix} 5 & 10 & 50 \\ 30 & 10 & 100 \\ 20 & 15 & 40 \end{bmatrix}\end{gathered}

5

30

20

10

10

15

50

100

40

\begin{gathered}\begin{bmatrix} x \\ y \\ z \end{bmatrix}\end{gathered}

x

y

z

= \begin{gathered}\begin{bmatrix} 37 \\ 72 \\ 43 \end{bmatrix}\end{gathered}

37

72

43

AX = B

=> X = A⁻¹B

A = \begin{gathered}\begin{bmatrix} 5 & 10 & 50 \\ 30 & 10 & 100 \\ 20 & 15 & 40 \end{bmatrix}\end{gathered}

5

30

20

10

10

15

50

100

40

A⁻¹ = adjA / | A |

|A| = 5(-1100) - 10(-800) + 50(250)

= -5500 + 8000 + 12500

= 15000

adj A

A11 = -1100

A12 = 800

A13 = 250

A21 = 350

A22 = -800

A23 = 125

A31 = 500

A32 = 1000

A33 = -250

adjA = \begin{gathered}\begin{bmatrix} -1100 & 350 & 500 \\ 800 & -800 & 1000 \\ 250 & 125 & -250 \end{bmatrix}\end{gathered}

−1100

800

250

350

−800

125

500

1000

−250

A⁻¹ = (1/15000) \begin{gathered}\begin{bmatrix} -1100 & 350 & 500 \\ 800 & -800 & 1000 \\ 250 & 125 & -250 \end{bmatrix}\end{gathered}

−1100

800

250

350

−800

125

500

1000

−250

X = A⁻¹B

= (-1/1000) \begin{gathered}\begin{bmatrix} -1100 & 350 & 500 \\ 800 & -800 & 1000 \\ 250 & 125 & -250 \end{bmatrix}\end{gathered}

−1100

800

250

350

−800

125

500

1000

−250

\begin{gathered}\begin{bmatrix} 37 \\ 72 \\ 43 \end{bmatrix}\end{gathered}

37

72

43

= (1/15000) \begin{gathered}\begin{bmatrix} 6000 \\ 15000 \\ 7500 \end{bmatrix}\end{gathered}

6000

15000

7500

= \begin{gathered}\begin{bmatrix} 0.4 \\ 1 \\ 0.5 \end{bmatrix}\end{gathered}

0.4

1

0.5

x = 0.4

y = 1

z = 0.5

costs per contact

telephone, = 0.4

house calls =1

and letters = 0.5

Answered by jessica1234657
17

Step-by-step explanation:

hiiiiiiiiiiiiiiiiiii I'm gooooooddddd howww r uu ankittt

Similar questions